
Parallel generation of a Mandelbrot set

Mirco Tracolli
mirco.tracolli@studenti.unipg.it

Department of Mathematics and Computer Sciences, University of Perugia

Antonio Laganá and Leonardo Pacifici
lagana05@gmail.com, leonardo.pacifici@unipg.it

Department of Chemistry, Biology and Biotechnology, University of Perugia

April 21, 2016

Abstract

The generation of the Mandelbrot set is a typical seemingly embar-
rassingly parallel problem because each initial data set generates an event
independent of the others. There are, though, several technicalities im-
plied by the transformation from the sequential algorithm to the parallel
one to be performed leading to different performances depending on the
computational approach chosen. The paper discusses two different paral-
lelization schemes and rationalizes why they lead to different performances
by making some considerations about the tools used.

1 Introduction

A Mandelbrot set[1] is a general class of complex numbers c for which the
succession generated by the relationship z(n+1) = z2n + c is limited. In its basic
algorithmic implementation for each given value of the complex parameter c, one
evaluates if the succession generated by iterating the above given relationship
diverges or not. The c value is retained as belonging to the Mandelbrot set
only if the succession is limited. It has been shown that whenever |zn| > 2 the
series diverges and c does not belong to the Mandelbrot set. A typical image
generated by a Mandelbrot set is given by the fractal shown in figure 1 below
as a function of the real and the imaginary part of c.

1

Figure 1: A typical image of a Mandlbrot set generated in our computational
study.

The study was started by running the code written for generating the Man-
delbrot set in a sequential manner (that means by iterating the above given
equations for a set of randomly generated values of c) and then the code was
restructured to run in parallel. Parallel runs were performed on a computer
network, in which the compute resources are distributed.

The compute platforms used for our calculations belong to two different
infrastructures:

• platform A - a cluster of 11 Intel dualcore 32 bit processors with 2 Gb of
Ram and i686 architecture

• platform B - a cluster of 13 Intel quadcore 64 bit processors with 2 Gb of
Ram x86 64 architecture

both working on the Scientific Linux version 6.5 [2] OS.
These infrastructures can be accessed from two front ends named respectively

cgcw [3] and fecw [4].
In the present paper we sketch in section 2 the main features of MPI, the

software used for the parallel distribution. In section 3 we present the considered
problem and the relative issues to solve. In section 4 we discuss the performance
of the tests carried out. In section 5 we draw some conclusions.

2 MPI

MPI (Message Passing Interface[5]) is a standardized and portable message-
passing system that allow users to create programs that communicate. The

2

typical MPI user is a programmer that needs to distribute his/her calculations
among a network of computer like the one sketched in figure 2:

Figure 2: A sketch of a typical MPI interconnection.

With the help of MPI each computer (called also node) can share resources
for use by the programs. From the MPI point of view the composition of
the computer network (see for example the one given in figure 3) is irrelevant,
because what matters is the number of processes that can run concurrently, as
illustrated in figure 4 by considering the processes of the previous sketch.

Figure 3: Sketch of MPI abstraction over the network.

In doing this, the MPI library disregards some hardware constraints (like
how many processes compete for the use of the node resources, the characteris-

3

tics of the network connecting the nodes, etc.) that may still be important in
determining the efficiency of the calculation.

Figure 4: MPI basic resources.

This basic MPI environment is called MPI World in which each process i is
marked by an identifier (rank) that is used to create a correspondence among
the subsets of matrix elements to be processed in the distributed calculus as
indicated in figure 5.

In our work we made use of the MPI version MPICH [6] and of the functionality
that allows to distinguish the considered process from the others both for job
submission to the workers and for the collection of their results by the master
process (that is, usually the one with the smallest rank (number 0)).

We exploited also the possibility of defining a new type using the command
MPI Type create struct in which struct contains the information needed to send
a message to the other processes and tell to the workers the job to run and the
exit from the program for all the processes.

Other used MPI commands are MPI Send and MPI Recv for the exchange
of messages. These commands are blocking and therefore stop the normal flow
of the algorithm to wait for the completion of the operation.

4

Figure 5: A sketch of how the work is subdivided.

The last two relevant commands are MPI Probe and MPI Wtime, used re-
spectively to check whether there are queued messagese for a process and to
take execution times.

Furthermore, the cluster we had available offered us an environment with
qsub[7] for the management and monitoring of the tasks submitted to the clus-
ter and for this reason we created a little script in Python[8] to simplify the
submission of all tests with qsub.

3 The problem

The problem tackled in our work is the transformation of the sequential cal-
culation of the Mandelbrot set into a parallel one in which, given the matrix
of points defined on a regular grid of values of the real (in the abscissa) and
imaginary (in the ordinate) components of c (see the image file in figure 1), it
is computed whether a point of the image belongs to it or not.

3.1 Sequential Algorithm

The sequential algorithm calculates the mentioned values starting for example,
as in the case shown in figure 6, from the top left hand side corner marked in
red and using the grid of points shown there.

5

Figure 6: Matrix subdivision of the space to be scanned adopted by the sequen-
tial algorithm.

The sequential algorithm is a simple procedure that iterates over the pixels of
the matrix and checks whether the considered point belongs to the Mandelbrot
set as described in the following pseudo code (Algorithm 1):

Algorithm 1: Sequential.

1 function main(iterations, width, height)
2 Initialize MPI
3 start← MPI Wtime
4 gen mandelbrot set(iterations, width, height)
5 end← MPI Wtime
6 Finalize MPI

This procedure is executed by running one process on a single node. The
get mandelbrot set function will generate an array of numbers (by default the
type is unsigned short) large width × height. The maximum value of a single
number is the value of iterations passed to the function.

It is worth pointing out here that, as shown above, also for the sequential
algorithm we used some MPI functions so as to make more homogeneous the
comparison with the parallel algorithms.

In order to implement a parallel version of the Mandelbrot algorithm by ex-
ploiting the distributive property of the algorithm 1 the matrix can split into
several sub matrices and the evaluation of the Mandelbrot condition for the
values of the considered sub matrices is performed concurrently by summing
up the individual outcomes the end. This can be performed by adopting two
different 2D (two dimensional) distributions of the data by means of the MPI
library:

6

• Static Load Balancing (SLB) model: given I processes and a M × N
matrix divided in sub matrices of dimension P ×Q each process will have
M/P rows and N/Q columns. If the matrix dimensions are not divisible
by the number of I processes the reminders of the matrix division could
be calculated for simplicity by the edge processes in the matrix grid;

• Dynamic Load Balancing (DLB) model: given I processes and a M ×N
matrix divided in sub matrices of dimension P ×Q each process will have
K ∗M/P rows and K ∗N/Q columns. The load of the processes have to
be balanced dynamically. The parameter K has been taken in most of our
calcualtions to be either 1/4 or 2/4, 3/4 and 4/4 (the latter is the limiting
value of K = 1 that makes the DLB and the SLB model coincide).

To manage the communication each implementation has a custom MPI type
that is used to send jobs and to call the exit of the programs. Each process
manages its own buffer and is responsible for cleaning the environment.

3.2 Static Load Balancing Parallel Algorithm

The SLB program divides the matrix and assigns a sub matrix of the image to
every process available. The main process (rank 0, the master process) calculates
the first sub matrix after sending to each worker the data of its job and collects
the results at the end of the calculations in order to construct the final image.

An example of sub matrices assignment is given in figure 7.

Figure 7: Static subdivision of the work in a 2× 3 grid.

The related pseudo code is given in Algorithm 2:

7

Algorithm 2: Static Load Balancing.

1 function main(iterations, width, height,N,M) . cell division = N ×M

2 Initialize MPI
3 Create message type and model
4 if rank == 0 then . Master, process with rank 0

5 Calculate subdivision of the matrix
6 start← MPI Wtime
7 Send jobs to each process
8 gen mandelbrot set() . part of the master

9 Receive the results from each process
10 Finalize final matrix
11 end← MPI Wtime

12 else . Workers, processes with rank i : i = 1.. (N ×M)− 1

13 Receive my job
14 gen mandelbrot set() . part of worker i

15 Send result

16 Finalize MPI

Figure 7 shows that the workload for the various jobs may differ. Accord-
ingly, some processes may have tasks smaller than those of others (with a con-
sequent negative impact on the performance).

3.3 Dynamic Load Balancing Parallel Algorithm

In the DLB approach the main process (rank 0) has only a managerial task
and it assigns to the available processes their K dependent tasks (see Figure 8).
Because of the dynamical nature of the approach the main process analyzes the
incoming messages and assigns the next job to perform to an already ended pro-
cess. After the completion of all tasks the main process recollects the remaining
pieces of information as soon as they become available from the processes that
are still busy.

8

Figure 8: A dynamic assignment of the work in a 2× 3 grid.

When K = 1, the assignment process is the same as in the SLB algorithm.
The variation of the K factor is expected to change significantly the perfor-
mances.

9

The pseudo code of this algorithm is given in algorithm 3.

Algorithm 3: Dynamic Load Balancing.

1 function main(iterations, width, height,N,M,K) . cell division= N ×M,

K = fraction

2 Initialize MPI
3 Create message type and model
4 if rank == 0 then . Master, process with rank 0

5 Calculate subdivision of the matrix
6 start← MPI Wtime
7 forall parts of the subdivision do
8 if worker available then
9 Send job to worker

10 else
11 while no worker available do
12 Check incoming messages with a probe
13 if message incoming then
14 Collect result of that worker
15 break

16 while there is a worker busy do
17 Check incoming messages with a probe
18 if message incoming then
19 Collect result of that worker

20 end← MPI Wtime
21 Send to all worker the command to exit

22 else . Workers, processes with rank i : i = 1.. (N ×M)− 1

23 while no exit command do
24 Receive job
25 gen mandelbrot set() . Current part to process

26 Send result

27 Finalize MPI

4 Performance tests

The first performance tests were run on the 32 bit environment of platform
A [3]. The smallest size of the matrix considered for the calculations was of
10000 (100× 100) pixels while the largest one was of 163840000 (12800× 12800)
pixels. We set also a maximum of 10000 for the iterations and partitioned the
matrix among 16 processes as 4× 4.

4.1 Elapsed times

Figure 9 shows measured elapsed times given in second. As is apparent from the
figure, the parallel approach is more efficient than the sequential one with the
elapsed time measured for the SLB model (see Algorithm 2) for 16 processes
being on the average more than 3 times smaller.

10

Figure 9: Elapsed time for the serial (green dashed line) and the parallel SLB
(blu dashed line) calculations performed using 16 processors.

As a double check we performed also the same calculation using the DLB
algorithm 3 with K = 1. As shown in figure 10, the performances obtained are
coincident with those of the SLB algorithm 2.

Figure 10: Elapsed time for the serial (green dashed line) and the parallel DLB
(red dashed line) calculations performed using K = 1 and 16 processors.

In order to better exploit the potentialities of the DLB algorithm, we carried

11

out further runs by setting K = 1/4. Computed elapsed times are plotted again
against those of the serial run in figure 10. As apparent from the figure, there is
a gain in time due to the fact that in the DLB approach the processes operate
on various sections of the matrix as soon as they become available. As a matter
of fact, the time saving with respect to the SLB algorithm is a factor of about
14.

Figure 11: Elapsed time for the serial (green dashed line) and the parallel DLB
(red dashed line) calculations performed using K = 1/4 and 16 processors.

To further check the impact of the subdivision of the image, we tested a
fixed matrix resolution and changed the grid subdivision. The image size was
1920 × 1080 and we illustrate the results obtained for both the 2 × 3 (upper
panel) and 3× 2 (lower panel) cases in figure 12.

As shown in the figure, this impacts the performance of the code that varies
significantly for both the DLB and the SLB algorithms as a function of the grid
configuration. As a result, the elapsed time of the dynamic approach while it is
clearly smaller than that of the static one for the 2x3 case, it is similar for the
3× 2 one.

12

Figure 12: Elapsed time for different choices of the value of K for the DLB
algorithm compared with that of the SLB one respectively for a 2 × 3 (upper
panel) and a 3× 2 (lower panel) partitioning

13

5 Speedups

In order to put on a more rigorous basis the criteria to be adopted when par-
titioning the image to the end of optimizing the performance of the two al-
gorithms, we caculated the speedup (i.e. the ratio between the elapsed time
associated with the scalar and that associated with the parallel execution) as a
function of the number of processes used.

These measurements were performed on the 64 bit configuration machines
of platform B[4]. On this platform the sequential algorithm performed better
than on platform A (the elapsed time measured on platform B is 2646.224791
second while that measured on platform A is 3408.752897 second).

For these calculations the size of the image matrix involved was 12800×12800
pixels while the number of iterations was left unaltered. As shown in figure 13,
the range of processes used varied from 2 to 20 using for the DLB algorithm
K = 1/4 (that showed to be the best partitioning in the previous tests).

On the average, the DLB algorithm shows to perform better that the SLB
one whose speedup never exceeds 4 regardless of the number of processes used.

Figure 13: Speedup measured for the SLB algorithm (blue line) and the DLB
one (red line)

The plots of figure 13, however, show a highly structured shape of the
speedup plot. That was highly surprising when considering that the DLB al-

14

gorithm is the most efficient one. A rationale for that was found in the fact
the matrix subdivision associated with the different number of processes may
vary significantly from one subdivision to another and result in some cases quite
unbalanced.

To better understand the impact of the assignment of the sub matrices to
the different processes we investigated the effect of adopting a more flexible
partitioning cryterion by allowing the submatrices to become single row and/or
single column. To speed up the calculations the size of the image matrices was
reduced to 1600x1600.

Figure 14: Speedup measured for the SLB algorithm by distributing either
single columns (yellow line) or single rows (violet line)

The speedup values plotted for the SLB algorithm, which show to be almost
double those for the SLB algorithm applied to rows totalling about 6.5 for 16
processes (see figure 14), agree with the fact that the columns of the Mandelbrot
set differ on the average more than the relative rows which have a more mixed
(belonging and not belonging to the set) nature.

This feature of the rows and columns of the Mandelbrot set is irrelevant
for the DLB algorithm that can assign further work as soon as a process is
completed. This is confirmed by the substantial agreement of the speedup values
computed when applying the DLB algorithms to rows and columns (see figure
15).

15

Figure 15: Speedup measured for the DLB algorithm by distributing either
single columns (blue line) or single rows (green line)

A final comparison of the performances of the SLB and DLB algorithms has
been carried out by evaluating the speed up for the single elements case whose
results are given in figure 16.

16

Figure 16: Speedup measured for the DLB (red) and the SLB (blue) single
element algorithm

As shown by the figure while the SLB model is completely inadequate for
dealing with such an atomistic approach to the parallel calculation of the Man-
delbrot set, the DLB one is able to reach a speedup of 12 for 16 processes.

6 Conclusions and ongoing work

The main result of the tests carried out by us is that the division of the grid on
which evaluate the Mandelbrot image affects significantly the measured parallel
performances of the calculation. We found, in fact, that the relative elapsed
time depends on the way the matrix is partitioned among the processes because
the various areas of the image matrix have a different density of calculations
and, therefore, require more computing effort than others.

The second result is that the dynamic algorithm copes better with uneven
distributions (as is inevitable in cases like the Mandelbrot image whose deter-
mination is purely numerical and weakly predicatable) than the static one when
using the same number of processes.

This was found to depend from the fact that smaller jobs cope better with
the dynamical algorithm because the subdivision of the image among the vari-
ous processes may differ significantly in terms of compute demand.

17

Furthermore, we found, that is in any case important to reduce the size of the
submatrices in the DLB approach (while it is not in a SLB one) because uneven
distributions are better compensated by the dynamic algorithm as shown by the
almost ideal linear increase of the speedup in this case. In this view, further
investigations are being performed using an approach of the Monte Carlo type
(that is closer to the DLB one).

18

References

[1] Weisstein, Eric W. ”Mandelbrot Set.” From MathWorld–A Wolfram Web
Resource. http://mathworld.wolfram.com/MandelbrotSet.html

[2] Scientific linux. https://www.scientificlinux.org/

[3] Accessed, Gen-Apr 2016. http://cgcw.herla.unipg.it

[4] Accessed, Gen-Apr 2016. http://fecw.herla.unipg.it

[5] Tanenbaum, Andrew S, ”MPI - Interfaccia a scambio di messaggi, in Ar-
chitettura dei calcolatori. Un approccio strutturale”, Milano, Pearson Edu-
cation, 2006, pp. 610-613, ISBN 978-88-7192-271-3.

[6] MPICH — High-Performance Portable MPI. https://www.mpich.org/

[7] Qsub, man page. http://gridscheduler.sourceforge.net/htmlman/

htmlman1/qsub.html

[8] Python programming language. https://www.python.org/

19

http://mathworld.wolfram.com/MandelbrotSet.html
https://www.scientificlinux.org/
http://cgcw.herla.unipg.it
http://fecw.herla.unipg.it
https://www.mpich.org/
http://gridscheduler.sourceforge.net/htmlman/htmlman1/qsub.html
http://gridscheduler.sourceforge.net/htmlman/htmlman1/qsub.html
https://www.python.org/

	Introduction
	MPI
	The problem
	Sequential Algorithm
	Static Load Balancing Parallel Algorithm
	Dynamic Load Balancing Parallel Algorithm

	Performance tests
	Elapsed times

	Speedups
	Conclusions and ongoing work

