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Abstract

Flexible and easy to reuse potential energy surface formulations play an important

role in the cooperative assemblage of simulations of chemical processes based on atom-

istic approaches. We discuss in this paper the fitting of potential energy surfaces for

two and three atoms via a Bond Order approach to the formulation of the interaction

terms. As a case study, we consider here diatomic and triatomic Nitrogen systems.

1 Introduction

Kinetics and dynamics properties of molecular systems are usually evaluated by integrating

relative motion equation on a suitable Potential Energy Surface (PES). This procedure is

most often articulated as follows:

(1) Information on the electronic structure of the involved molecular system (mostly ab

initio though not infrequently data from other sources are available) are collected;

(2) Available data are fitted into a suitably accurate PES coded as a routine providing a

numerical value of the potential energy for the molecular geometry considered;

(3) The routine is checked and corrected for a proper behaviour in the whole internuclear

distance space;

(4) Extended dynamical calculations are performed to calculate the properties of interest.

In our laboratory the above mentioned procedure has been incorporated into GEMS

(Grid Empowered Molecular Simulator)1–3 as part of the activities of the COMPCHEM VO

(Virtual Organization)4 first and of the CMMST (Chemistry Molecular and Materials Sci-

ence and Technologies) VRC (Virtual Research Community)5 later. As advocated by the

Open Science consultation document (see ref.6) VRCs should adopt an Open approach to

the process of Investigating ! Discovering ! Analysing ! Writing !Publishing ! Out-

reaching ! Assessing Science. In particular, VRCs should engage themselves in developing

an Open Science cloud (develop common interfaces, data standards, maintenance, interoper-

ability and sustainability) so as to establish an Open Science Cloud for data, protocols and
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methodologies (see http://ec.europa.eu/research/openscience/).

In this respect the CMMST VRC promotes:

- the production of both accurate structural data for existing (and, possibly, new) chem-

ical compounds and ab initio efficiency parameters for elementary (and composite) chemical

processes in the field of materials, energy, health, technological processes, etc.

- the free reuse of data produced by the members of the related communities as part

of the Open Science model to perform simulations generating innovation at higher level of

complexity in the above mentioned fields

- the leveraging on resulting chemical knowledge to teach, train and evaluate people in

education and professions.

More specifically, in the recent past the CMMST VRC has specialized GEMS to the

systematic study of the homonuclear chemical processes of Nitrogen. Within this effort,

several studies have been devoted to the formulation of a full-dimensional PES of N + N2

starting with a LEPS published in ref.7 Later the LEPS PES was improved to exhibit a

double barrier Minimum Energy Path (MEP) using a Largest-Angle Generalized ROtating

Bond Order (LAGROBO) methodology based on Bond Order (BO) coordinates8 to fit a set

of available high-level ab initio data.9,10 Further ab initio calculations were performed later

and two new full-dimensional surfaces were published,11,12 both confirming a double barrier

structure for the N + N2 MEP. The investigation was also extended to N2 + N2 by focusing

initially only on the inelastic channel. Accordingly, the PES was initially formulated as a

sum of the two N2 intramolecular interactions and of an intermolecular component (ie that

of two separated nitrogen molecules with their internuclear distances close to equilibrium)

described in terms of isotropic and anisotropic contributions. For this purpose expansions in

spherical harmonics (see for example refs13–18) and bond-bond pairwise additive interaction

(see ref19) were used. The LAGROBO approach was also extended to four nitrogen atom

systems.20 Studies of the interaction components of non reactive processes of N2 + N2 have

been reported in ref.21,22 In order to include in the study atom exchange and fragmentation
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(of one (or both) molecule(s)) processes further ab initio studies were performed for a wide set

of molecular geometries.23–25 and fitted using also a statistically localized, permutationally

invariant, local moving least squares interpolating function.26,27 This feature provides the

fitted PES with sufficient flexibility to improve the qualiy of dynamical studies and allow

a valid description of high energy processes (including dissociation). Moreover, it makes

consistent the formulation of two, three and four body components of the interaction. For

this reason it has been also used to the end of carrying out our extended calculations of

thermal rate coefficients and detailed state specific collision induced cross sections.28 This

has also motivated our efforts to develop out of it a Bond Order based version.

Acccordingly the paper is organized as follows:

in section 2 global Model Approaches and Local-Mobile Methods to the formulation of

potential energy surfaces are discussed,

in section 3 some two body process-driven fitting methods are analyzed,

in section 4 a few body proposal for fitting potentials is discussed,

in section 5 an analysis of the N2 + N2 four body case is reported and

in section 6 some conclusions are drawn.

2 Global Model approaches and Local-Mobile Methods

for the formulation of potential energy surfaces

The most general procedure for formulating a global PES is based on the weighted Least

Squares (LS) method.29 The LS method expands the PES in terms of the fk(r) basis functions

depending on the collection of coordinates r on which it is formulated with ck being the

coefficients of such expansion

V (r) = cT f(r) = fT (r)c =
LX

l=1

clfl(r). (1)
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In eq. 1 c and f are column vectors, the superscript T denotes as usual "transpose" and L

is the number of basis functions. The coordinates and energy values of the data points to be

interpolated are r(i) and v(i), respectively, with i = 1, 2, .., imax and imax being the number

of data points.

In a LS fit to the PES one determines the coefficients ck, by considering the func-

tional weighted squares of the deviations of the fitted potential from the calculated data
Pi

max

i=1 wi[V (r) � v(i)]2 in which wi is the weight associated with the ith point (in fitting

ab initio points wi is sometimes chosen to weight more the points located around the min-

imum energy path of the considered process channels although they are often taken to be

unity). By minimizing this functional (that is equivalent to it being stationary with respect

to variation in the parameters ck) one obtains the following "normal" equations:

FWF

Tc = FWv, (2)

where W is the diagonal matrix of all the weights wi

W = diag[w1, w2, ..., wi
max

], (3)

and F is the matrix of the values of the basis functions f(r) at r(i):

F =

0

BBBBBBB@

f1(r(1)) f1(r(2)) ... f1(r(imax))

f2(r(1)) f2(r(2)) ... f2(r(imax))

... ... ... ...

fL(r(1)) fL(r(2)) ... fL(r(imax))

1

CCCCCCCA

. (4)

Functions fk can be freely chosen. However, a choice typical of spectroscopic studies of

stable molecules is a polynomial in all the involved variables (a multinomial) multiplied by an

exponential in the dissociating coordinate(s) so as to enforce the correct asymptotic limit.

Equations 2 only need to be solved once and the simple linear form of related solutions
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allows for very efficient evaluation. Yet, the quality of the fit obtained in this way strongly

depends on the choice made for the number and nature of the basis functions and may bear

spurious structures in localized regions of the potential. This can be avoided by resorting to

extended (a large number of molecular geometries) ab initio calculations so as to dominate

the tendency of polynomials in the internuclear distances to diverge at intermediate range

before being damped by the related exponentials. This technique has become recently very

popular and has fostered the use of local methods. A great advantage of these methods

is, in fact, the possibility of improving the fitting (if either further molecular geometries

need to be considered or the available fit is insatisfactory) by simply adding more ab initio

values relative to nearby geometries (though not necessarily located on a uniform grid). Still,

however, it is wise to use polynomials in coordinates enforcing the smooth vanishing of the

PES at long distance30,31 (as will be discussed in more detail later) and to leverage as well

on the symmetry of the system to simplify the formulation of the PES.32

Accordingly, significant efforts have been paid to develop Moving Least Squares (MLS)

techniques which mix together global (a linear LS algorithm that is similar to the global

one) and a local (basis functions which are only used locally to the geometry of interest)

features.29 Because of this, low order polynomial functions are needed though the coefficients

of the basis functions are now functions of geometry, and therefore a heavier computational

effort is required for the evaluation of the surface.

In the MLS scheme33 the value V (r) at point r is represented again by a linear combi-

nation of linearly independent basis functions fk(r)(j = 1, ..., n):

V (r) = cT (r)f(r) = fT (r)cT (r) =
LX

l=1

cl(r)fl(r). (5)

Yet in MLS the coefficients c1(r), c2(r), ..., cL(r) are allowed to depend on the coordinates r

used to define the PES by using coordinate dependent weight functions.

Being as before the coordinates and energy values to be interpolated r(i) and v(i)(i =
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1, 2, .., imax) with imax the number of data points, the error functional is given by
Pi

max

i=1 wi(r)[V (r)�

v(i)]2 where now the weights wj are functions of r). From the condition that the error

functional be stationary with respect to variation in the parameters ck(r), the following

generalized normal equations are obtained:

FW (r)F Tc(r) = FW (r)v (6)

with the weights wj, which vary with r, being larger for data points that are close to r than

for points far away. Owing to the fact that the weights depend on position, the expansion

coefficients cj(r) must be obtained from a solution of Eq. (6) for each value of r where the

potential needs to be determined.

To calculate the gradient of the energy at any point (as it would be needed, for example,

in a trajectory calculation), take the first derivative of Eq. (5):

us(r) = cTs (r)f(r) + cT (r)fs(r). (7)

Here cs(r) (the derivative of c(r) with respect to the sth coordinate) is obtained by solving

the following equation

FW (r)F Tcs(r) = FWs(r)[v � F

Tc(r)]. (8)

The interpolated energy and gradient values at any point can be obtained by solving

Eqs. (6) and (8) which have dimensions equal to the number of basis functions used. For

trajectory calculations, this solution is fairly time consuming for a large number of basis

functions. This can be overcome by calling on an IMLS (Interpolant MSL) technique in

which equations (6) and (8) (and equivalent expressions for the second derivatives) are used

to define gradients and hessians at the positions of the ab initio data points, and then the

results are used to define a Shepard interpolation in which the potential is represented as a
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weighted sum of Taylor expansions about each ab initio point.29

3 Process Driven Fitting Methods: a unified view of the

two body interactions

Although local mobile fitting methods bear a high degree of flexibility in the choice of coef-

ficients, functional forms and grids of molecular geometry internuclear distance values, they

have not yet become of widespread use in actual calculations. In fact, in general, their

application is particularly demanding in terms of the number of molecular geometries to

be considered for the ab initio calculations of the electronic structure while being poor in

terms of the correspondence between the estimated values of the c coefficients and physical

properties. In order to achieve the objective of both reducing the number of needed ab

initio computations and associating a more direct physical meaning to the coefficient values

generated by the fitting proedure, we devoted significant efforts to work out possible relation-

ships between the local formulation of the interaction and related processes and observable

quantities.

The obvious starting point of our investigation has been the formulation of the potential

V (r) of two body processes (typically the elastic atom-atom scattering (weak interactions)

and diatomic spectroscopy (strong interactions) like those of the N-N system considered here

as a case study) which are defined in one dimension (r the diatomic internuclear distance)

once the electronic energy has been adiabatically separated using the Born-Oppenheimer ap-

proximation. The first family of functional formulations of the V (r) potential was designed

to describe bound systems and processes involving diatomic eigenstates (typically diatomic

vibrations for spectroscopic and intramolecular dynamics studies usually associated, as al-

ready mentioned, with stronger interactions). At the beginning of spectroscopic studies the

potential used to be expressed in terms of powers of r (or better r � re with re being the

equilibrium distance of the diatom) by referring to the Harmonic Oscillator (HO) model
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V

HO(r) = k(r � re)2 and then generalized to the anharmonic case as a polynomial of the

fourth order

V

spectr(r) =
4X

j=2

fj

j!
(r � re)

j (9)

In eq. 9 for N2 f2=10222.78 aJ/nm2, f3=-177.61103 aJ/nm3, and f4=1195.28104 aJ/nm4

are the harmonic, cubic and quartic force costants of the diatomic oscillator,34 respectively.

The second type of formulations of the two body V (r) potential, more recent than those of

spectroscopy, were designed to describe atom atom collisional (scattering) processes usually

associated with weaker interactions. In this case, the two body potential V (r) is most

often formulated in terms of inverse powers of r (typically Lennard-Jones 12-6 (LJ) and its

variants)

V

scatt(r) =
C12

r

12
� C6

r

6
(10)

and refers mainly to long range interactions (its parameters are often formulated also in

terms of " the depth of the associated well).30,35

Given the above defined formulations of a weak and a strong interaction component of a

two body process channel (subtending the variations occuring in the associated multidimen-

sional electronic structure problem), a popular practice aimed at matching them in a single

expression consists in defining a switching function turning the two components either on

or off. This approach, however, can easily lead to spurious structures in the intermediate

region.

A way of coping with this problem is first the introduction in both formulations of cor-

rections providing additional flexibility useful to facilitate their matching in the intermediate

region. This is indeed the case of the strong interaction when multiplying a polynomial of

the type given in Eq. 9 by an exponential damping function (EDAP, Exponentially Damped

Anharmonic Potential)36

V

edap(r) =
JX

j=1

cj(r � re)
j
e

�(r�r
e

) = P (r)e��(r�r
e

)
. (11)
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that results in a smoothly vanishing V (r) mimicking the form of V scatt(r) at large distances

(provided that � is properly chosen). A popular re-formulation in this sense of the strong

interaction of Eq. 9 is the Morse potential that reads as:

V

morse(r) = De(e
�2�(r�r

e

) � 2e��(r�r
e

)) (12)

in which � is equal to the square root of the ratio between the force constant of the diatom

and twice its dissociation energy De. A reformulation of the weak interaction of Eq. 10 the

LJ potential is generalized into an Improved LJ (ILJ)35 one as follows

V

ILJ(r) = "o


m

n(x)�m

1

x

n(x)
� n(x)

n(x)�m

1

x

m

�
(13)

where x = r/re and n(x) = � + 4x2. In this way the increasing deformation of the atomic

electronic distributions as the two atoms approach the short range region is accounted for

by a modulation of both the repulsive and the long range attractive components of the

interaction. In Eq. 13 the value of the parameter � ranges from 6 to 10 (depending on

the hardness of the interacting electronic distributions) and could be estimated using the

empirical formula

� = 6 +
5

s1 + s2
(14)

where subscripts 1 and 2 identify the colliding partners and s1 and s2 stand for the related

softness parameters which are related to the cubic root of the polarizability. Moreover,

for neutral-neutral systems, "o and re can be given in terms of the polarizability of the

interacting partners. For N2 the values of the mentioned parameters are: m=6, "o=0.00643

eV, re=3.583Å. and �=6.6055.

The above mentioned modifications make the transition from the atom-atom (scattering)

long range to the diatom (spectroscopy) short range formulation of the interaction smoother

(even when using simple switching functions). This becomes of paramount importance par-
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ticularly in the regions of the molecular geometries where fewer calculated ab initio values

are available. This further advance in matching scattering and spectroscopy biased formu-

lations of the two body PES can be even more profitably exploited to the end of defining

a continuity variable enabling the assemblage of a unified simple polynomial expression for

V (r). An ideal candidate for this unification is, indeed, the already mentioned Bond Order,

BO, coordinate n = e

��(r�r
e

) (whose � parameter is numerically determined to reproduce

the diatomic force costants of higher order (see ref.30)) whose polynomials

V

BO(r) = De

JX

j=0

cjn
j (15)

bears interesting properties. In particular, the BO polynomial naturally incorporates the

key advantages of the V

morse(r) potential that corresponds to its truncation to the second

order. Namely: the inverted (with respect to r) Harmonic-like shape confined between n = 0

(infinite distance and potential energy equal to the dissociation energy) and n = e

�r
e (zero

distance and large potential energy) with a minimum at n=1 (equilibrium distance and

minimum energy).

This inverted nature of the BO space allows a straightforward extension of the BO poly-

nomial to incorporate also the main features of the long range potential. This can be obtained

either through a separate fitting to the long range interaction values of the higher order r�j

terms as r increases and to the short and equilibrium range interaction values of the Morse

like low order ones up to some multiple of re (then connected via a switching function) or

through a higher order single BO polynomial global fitting of both the long and short range

interactions. Results obtained for the N2 case are shown in the Table below

Table 1: Coefficients of the N2 BO potentials formulated using De=954.92 kJ/mol
and re=0.1098 nm. RMSD(BO4)= 4.33 kJ/mol, RMSD(BO6)=2.72 kJ/mol.

PES c1 c2 c3 c4 c5 c6

BO4 2.4200 -1.9573 0.6547 -0.1174
BO6 2.9833 -3.7743 2.9145 -1.4858 0.4077 -0.0457
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Further advantages of using a BO formulation of mobile local potential nature can be

obtained by segmenting the BO space in different intervals and optimizing with appropriate

criteria related coefficients for each segment while keeping a common functional form (avoid-

ing so far the use of different functions to switch between). This concept, recently developed

in ref.37 by defining the so called Space Reduced (SRBO) version of the BO variables, allows

a wise (separate) sampling of the interaction in the BO space in order to balance the number

of ab initio points to be calculated in different distance ranges. The SRBO method allows

also an appropriate identification of neighbor ab initio points, a better definition of sectors of

propagation sectors for the integration of quantum Time Independent scattering equations

as well as the singling out of a suitable continuity variable also for electronic state jump

processes in two body systems.

4 Process Driven Fitting Methods: three body interac-

tions

After having discussed the use of BO polynomials in one dimension for formulating two

body interactions let us turn our attention to their use for three body interactions in which

existing bonds can be either heavily deformed or even broken-formed due to the interaction

with a third atom. In the past we have already investigated the use of two dimensional BO

polynomials for (fixed angle) three body interactions and their variants for different atom

diatom arrangements.31 Our main target was the proper description of the evolution of the

interaction channel for reactive bimolecular events (like the fixed collision angle atom B

transfer (from BC to AB) reaction A + BC ! AB + C and its three dimensional gener-

alization named LAGROBO. The most popular description of the fixed angle �B= ˆ
ABC A

+ BC ! AB + C reaction channel is given in terms of the related internuclear distances

(sometimes also in terms of the relevant Jacobi coordinates) and can be followed in terms of

a deformation of a diatomic-like model potential (most often a Morse-like function) starting
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with that of the BC reagent and ending up to be that of the AB product. To ensure a smooth

switching from one atom-diatom limit to the other, the usual procedure is to introduce the

polar coordinates �

r
B and ⌘

r
B defined as follows38,39

�

r
B = [(r⇤AB � rAB)

2 + (r⇤BC � rBC)
2]1/2 (16)

⌘

r
B = tan�1


(r⇤BC � rBC)

(r⇤AB � rAB)

�
(17)

with rAB and rBC being the two internuclear coordinates, r⇤AB and r

⇤
BC defining the origin

of the coordinate system (chosen to have values larger (say about three times) than the

corresponding diatomic equilibrium distances in order to be placed in the classically forbidden

region separating asymptotically the reactant from the product channel and avoid the loss

of flux). Similarly, one can define �

r
C and ⌘

r
C for the pair of rBC and rCA internuclear

coordinates, and �

r
A and ⌘

r
A for the pair of rCA and rAB internuclear coordinates. The key

advantage of these coordinates is the possibility to define a (sometimes piecewise) continuity

coordinate for collisions penetrating inside the strong interaction region.

In order to avoid the mentioned critical choice of the origin of the polar coordinate system,

one can resort into using the corresponding fixed �I polar formulation of the BO coordinates.

For the polar BO coordinates the origin can be safely placed at the common origin of the

two involved BO variables as formulated in the so called ROtating BO (ROBO)40 with no

loss of flux. An interesting feature of these coordinates lies in the fact the related angle �I

defined as

�I = tan�1


nI�1,I

nI,I+1

�
(18)

(where I is any atom of the triatom modulus 3 and ±1 are the follwing and the preceding

one) is a continuity variable connecting the reactant diatom of hannel I to the product one.

At the same time the variable ⇢ defined as:

⇢I = [n2
I�1,I + n

2
I,I+1]

1/2 (19)

13

VIRT&L-COMM.9.2016.2

ISSN: 2279-8773



spans the different fixed angle elongations of the system whose interaction can be formulated

as a polynomial in ⇢ as follows

V

BO
I (�I ,�I ; ⇢I) = A

JX

j=0

cj⇢
j
I (20)

and coincides with the potential of the separated diatom (either reactant or product)

at �I = 0 and �I = ⇡/2. The polynomial given in 20 is able to reproduce single- and

multi-minimum structures at intermediate values of �I allowing the description of distorted

triatomic geometries as well as the branching of the reaction entrance channel into dif-

ferent product ones. Accordingly, a simple local model dependence of the ⇢ polynomials

V

BO
I (�I ,�I ; ⇢I) (parametric in �I and �I) can be worked out in order to be able to best fit

the overall PES and to properly approximate locally its shape in the neighboor regions from

a limited (properly weighted) nearby ab initio points while featuring a physically grounded

meaning of the parameters. Among the strategies allowed by the LAGROBO treatment

there is the one of giving a larger weight to the collinear geometries because they are the

ones more accurately determined by several ab initio techniques. Further advantages can be

obtained by adopting the SRBO formalism that, by enabling an optimized segmenting of the

continuity variable, permits a continuous adaptation to the arrangement channel considered

to the exploration of an ad hoc optimized descritpion of the potential channel assciated with

the desired process. This approach leads to a generaliation of the so called Many Process

Expansion (MPE) MPE (MPE-MEP)41 in which the local mobile choice of the cs fitting

coefficients is driven by the localization of the MEP of the different MPEs.

5 Conclusions and future work

The effort of addopting BO formulations for 2 and 3 atom systems is shown in this paper

to pay back in terms of producing flexible and smooth potential energy surfaces. Further

work is being spent to generalize the BO formulation to four or more atoms by considering
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each bond breaking, forming or/and exchanging as an individual process. Particular effort

is being spent in collaboration with F. Pirani and his collaborators to tackle the case of

the N2 + N2 for which a symmetric version of the BO four body cooordinates has been

already elaborated that can be easily adapted to describe the two diatoms channels as well

as the atom triatom one.20 Related ROBO parameters have been best-fitted both to the

spectroscopic and ab initio data of the related diatoms at the asymptotes as well as to the

kinetic and ab initio information related to the reaction channel so as to connect smoothly

the reactant and product asymptotes through the intermediate structures. Additional effort

will be spent to the end of extending the long range interaction to match the short range

one at intermediate distances. To this end leverage will be made on the dependence of the

molecular electronic polarizability ↵(r) and of the electric quadrupole moment Q(r) on r.

References

(1) A. Laganà, A. Costantini, O. Gervasi, N. Faginas Lago, C. Manuali, S. Rampino,

S. Costantini, A., Gervasi, O., Manuali, C., Faginas-Lago, N., Rampino, S., J. Grid

Comput., 8, 571-586 (2010).

(2) C. Manuali, A. Laganà, Rampino, S. Computer Physics Communications, 181, 1179-

1185 (2010).

(3) S. Rampino, N. Faginas Lago, A. Laganà, F. Huarte-Larrañaga, Journal of Computa-

tional Chemistry 33, 708-714 (2012).

(4) A. Costantini, O. Gervasi, N. Faginas Lago, C. Manuali, S. Rampino, Journal of Grid

Computing, 8(4), 571-586 (2010).

(5) A. Laganà, Towards a CMMST VRC,

http://www.hpc.unipg.it/ojs/index.php/virtlcomm/article/view/40.

(6) http://ec.europa.eu/research/consultations/science-2.0/science_2_0_final_report.pdf.

15

VIRT&L-COMM.9.2016.2

ISSN: 2279-8773



(7) A. Laganà, E. Garcia, L. Ciccarelli, J. Phys. Chem., 91, 312–314 (1987).

(8) H.S. Johnston, C. Parr, J. Am. Chem. Soc., 85, 2544 (1963).

(9) E. Garcia, A. Laganà, J. Phys. Chem., 101, 4734-4740 (1997).

(10) E. Garcia, A. Saracibar, S. Gómez-Carrasco, A. Laganà Phys. Chem. Chem. Phys., 10,

2552-2558 (2008).

(11) D. Wang, J.R. Stallcop, W.M. Huo, C.E. Dateo, D.W. Schwenke, H. Partridge, J.

Chem. Phys., 118, 2186-2189 (2003).

(12) B.R.L. Galvão, A.J.C. Varandas, J. Phys. Chem., 113, 14424-14430 (2009).

(13) A. van der Avoird, P.E.S. Wormer, A.P.J. Jansen, J. Chem. Phys., 84, 1629-1635 (1986).

(14) J.R. Stallcop, H. Partridge, Chem. Phys. Lett., 281, 212-220 (1997).

(15) D. Capelletti, F. Vecchiocattivi, F. Pirani, E.L. Heck, A.S. Dickinson, Mol. Phys., 93,

485-499 (1998).

(16) V. Aquilanti, M. Bartolomei, D. Cappelletti, E. Carmona-Novillo, F. Pirani, J. Chem.

Phys., 117, 615-627 (2002).

(17) L. Gomez, B. Bussery-Honvault, T. Cauchy, M. Bartolomei, D. Cappelletti, F. Pirani,

Chem. Phys. Lett., 445, 99-107 (2007).

(18) R. Hellmann, Mol. Phys., 111, 387-401 (2013).

(19) D. Cappelletti, F. Pirani, B. Bussery-Honvault, L. Gomez, M. Bartolomei Phys. Chem.

Chem. Phys., 10, 4281-4293 (2008).

(20) M. Verdicchio, Atmospheric reentry calculations and extension of the formats of quan-

tum chemistry data to quantum dynamics, Master Thesis University of Perugia (2009).

16

VIRT&L-COMM.9.2016.2

ISSN: 2279-8773



(21) A. Kurnosov, M. Cacciatore, A. Laganà, F. Pirani, M. Bartolomei, E. Garcia J. Comput.

Chem., 35, 722 (2014).

(22) E. Garcia, T. Martínez, A. Laganà Chem. Phys. Lett., 620, 103 (2015).

(23) L. Pacifici, M. Verdicchio, N. Faginas Lago, A. Lombardi, A. Costantini J. Comput.

Chem., 34, 2668-2676 (2013).

(24) Y. Paukku, K.R. Yang, Z. Varga, D.G. Truhlar, J. Chem. Phys., 139, 044309 (2013).

(25) Y. Paukku, K.R. Yang, Z. Varga, D.G. Truhlar, J. Chem. Phys., 140, 019903 (2014).

(26) J.D. Bender, S. Doraiswamy, D.G. Truhlar, G.V. Candler, J. Chem. Phys., 140, 054302

(2014).

(27) J.D. Bender, P. Valentini, I. Nompelis, Y. Paukku, Z. Varga, D.G. Truhlar, T.

Schwartzentruber, G.V. Candler, J. Chem. Phys., 143, 054304 (2015).

(28) F. Esposito, E. Garcia, A. Laganà, Scaling rules for N+N2 and N2+N2 collisional dis-

sociation in gas phase, Plasma Sources Science and Technology (submitted)

(29) G.C. Schatz, Fitting Potential Energy Surfaces in Reaction and Molecular Dynamics,

Laganà A and Riganelli A Ed. Springer-Verlag 2000, 15-30

(30) E. Garcia, A. Laganà, Diatomic potential functions for triatomic scattering Mol. Phys.

56, 621-627 (1985).

(31) E. Garcia, A. Laganà, A new bond order functional form for triatomic molecules A fit

of the BeFH potential energy Mol. Phys. 56, 629-639 (1985).

(32) J.M. Bowman, G. Czacó, B. Fu, Phys. Chem. Chem. Phys., 13, 8094-8111 (2011).

(33) P. Lancaster, K. Salkauskas, Curve and surface fitting, an introduction, Academic,

London 1986.

17

VIRT&L-COMM.9.2016.2

ISSN: 2279-8773



(34) D.M. Hirst, Potential Energy Surfaces: Molecular Structure and Reaction Dynamics,

Taylor & Francis Ltd, 1985

(35) F. Pirani, S. Brizi, L. Roncaratti, P. Casavecchia, D. Cappelletti, F. Vecchiocattivi,

Phys. Chem. Chem. Phys., 10, 5489 (2008).

(36) J.N. Huxley, J.N. Murrell, J. Chem. Soc. Farad. 79, 323 (1983).

(37) S. Rampino, Configuration-space sampling in potential energy surface fitting:

a space-reduced bond-order grid approach, J. Phys. Chem. A, 2016, DOI:

10.1021/acs.jpca.5b10018

(38) J.S. Wright, S.K. Gray, J. Chem. Phys., 69, 67 (1978).

(39) J.M. Bowman, A. Kuppermann, Chem. Phys. Letters, 34, 523 (1975).

(40) A. Laganà, J. Chem. Phys., 95, 2216 (1991)

(41) E. Garcia, C. Sanchez, A. Rodriguez, A. Laganà, A MEP-MPE potential energy surface

for the Cl + CH4 reaction, Int. J. Quantum Chem., 106, 623-630 (2006).

18

VIRT&L-COMM.9.2016.2

ISSN: 2279-8773


