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Introduction

L’approccio teorico a diverse applicazioni scientifiche di tipo ambientale e tecnologico si è

notevolmente evoluto grazie al formidabile sviluppo degli strumenti delle Tecnologie per la Comu-

nicazione e l’Informazione (TCI). Di fatto, gli scienziati hanno sempre meno a che fare con prob-

lemi puramente teorici. Al contrario, sempre maggiore è l’impegno che essi profondono in problemi

pratici la cui soluzione, però, necessita di ricerche scientifiche avanzate e notevoli investimenti in

termini di risorse computazionali.

Fortunatamente, i recenti sviluppi delle TCI mettono a disposizione dei ricercatori piattaforme com-

putazionali sempre più evolute il cui utilizzo consente la risoluzione di problemi di sempre maggior

complessità. Attualmente la Grid computazionale sta diventando rapidamente la piattaforma di

riferimento. Essa sfrutta la rete Internet per fare leva sulla potenza di diverse migliaia di computer

geograficamente distribuiti, per farli operare insieme grazie a middleware appositamente svilup-

pati. La grid computazionale rende possibile l’esecuzione contemporaneamente un grosso numero

di applicazioni (programmi) e quindi portare a termine sofisticate simulazioni in tempi relativa-

mente brevi.

Nel mio lavoro di tesi, all’interno dei lavori svolti dal gruppo Computational Dynamics and Ki-

netics (CDK) del Dipartimento di Chimica dell’Università di Perugia, ho impiegato le potenzialità

della grid per studiare alcuni problemi della modellistica per il rientro in atmosfera. In tale situ-

azione la navetta spaziale non risente solamente delle condizioni estreme del regime fluidodinamico

del gas circostante, ma anche di diversi processi critici che possono avvenire all’interno della fase

gassosa e tra la fase gassosa e il rivestimento della navetta stessa. Nello specifico il mio lavoro è

stato incentrato sullo studio delle reazioni in fase gassosa e più precisamente sullo studio teorico

delle collisioni reattive dei processi N + N2 e N2 + N2. La comprensione di questi tipi di collisione

è, infatti, necessaria per razionalizzare le proprietà (energetiche e di composizione) dell’aria che

fluisce attorno ad una navicella al rientro e per comprendere la loro natura microscopica.
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2 Introduction

Uno dei problemi associati all’uso della Grid per questo tipo di studi, sta nella possibilità di com-

porre vari strumenti di chimica e dinamica quantistica per effettuare estesi calcoli computazionali,

utilizzando un workflow comune e modelli e rappresentazioni comuni dei dati. Il lavoro associato a

questo sforzo deve essere ancora dispiegato nella sua interezza e la mia tesi vuole essere un primo

passo nella direzione di una generalizzazione a sistemi con un numero crescente di atomi. Per questi

motivi la tesi è stata articolata nelle seguenti sezioni:

• Sezione 1 descrive i fondamenti teorici e le procedure computazionali sviluppate per il calolo

delle strutture elettroniche per i sistemi presi in esame;

• Sezione 2 descrive i fondamenti teorici e le procedure computazionali sviluppate per simulare

la dinamica dei nuclei;

• Sezione 3 descrive le innovative tecnologie computazionali necessarie per l’uso della Grid

come piattaforma computazionale per effettuare calcoli complessi e ottenere un elevate inter-

operabilità;

• Sezione 4 descrive i progressi fatti nello studio della reazione atomo diatomo N + N2 e

nell’impostare il lavoro per il diatomo-diatomo N2 + N2;

• Sezione 5 vengono presentate le conclusioni e le linee guida per lavori futuri.

• • •

Theoretical approaches to various environmental and technological scientific applications have

significantly evolved thanks to the impressive evolution of Information and Communication Tech-

nology (ICT) means. As a matter of fact, scientists are seldom facing purely theoretical problems.

On the contrary, they are more and more getting involved in practical problems whose solutions,

however, require advanced scientific research and impressive investment in terms of computing.

Fortunately, recent evolution of ICT is increasingly offering to scientists computational plat-

forms whose exploitation allows to solve of computational problems of high complexity. At present

the computing grid is rapidly becoming the platform of reference. The computing grid exploits in-

ternet connections to leverage on the power of several thousands of geographically dispersed com-

puters concurrently operating thanks to ad hoc designed middlewares. The computing grid make

it feasible to run concurrently large batches of jobs and perform several complex simulations in
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Introduction 3

relatively short time.

In my thesis work I exploited, within the activities of the Computational Dynamics and Kinetics

(CDK) group of the Department of Chemistry of the University of Perugia, the potentialities of

grid computing when dealing with the problem of modeling atmospheric reentry. In this situation

a spacecraft experiences not only extreme conditions for the fluid dynamics regime of surrounding

gases, but also undergoes the effect of several gas-gas and gas surface critical chemical processes.

In particular, my work has focused on the study of the two pure gas phase reactions N + N2 and N2 +

N2. The understanding of these reactive collisions is, in fact, necessary to rationalize the energetic

and composition properties of air flowing around a reentering spacecraft and to understand their

microscopic nature.

A problem associated with the exploitation of the Grid for this type of calculations is the possi-

bility of composing various quantum chemistry and quantum dynamics tools to perform extended

computational campaigns, using a common workflow and common models and representation for

data. The associated work is still largely to be deployed in its entirety and my thesis work repre-

sents a first step in the direction of a generalization to systems with an increasing number of atoms.

Accordingly, the thesis is articulated into the following sections:

• Section 1 describes the theoretical foundations and the computational procedures concerning

the calculation of the electronic structure of the chemical systems considered;

• Section 2 describes the theoretical foundations and the computational procedures developed

to calculate the dynamics of the nuclei;

• Section 3 describes the innovative computational technologies needed to use the Grid as a

computing platform and the first steps accomplished to obtain high interoperability;

• Section 4 describes the results obtained for the study of the atom-diatom N + N2 reaction,

putting the foundations for the study of the diatom-diatom N2 + N2 reaction;

• Section 5 draws some conclusions and illustrates some guidelines for future work.
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Chapter 1

Theory and computation for electronic
structure calculations

In questo capitolo, come già specificato nell’introduzione, poniamo i fondamenti teorici e le

procedure computazionali utilizzate per lo studio delle strutture elettroniche dei sistemi considerati.

Nella sezione 1.1 analizziamo brevemente le basi dell’approssimazione Born-Oppenheimer che ci

permette di diminuire la dimensionalità del problema separando il moto dei nuclei da quello degli

elettroni.

Nella sezione 1.2 vengono invece analizzate in dettaglio le avanzate tecniche teoriche usate per il

recupero dell’energia di correlazione, uno degli ostacoli più grandi per quanto riguarda lo studio

delle strutture elettroniche, e il metodo adottato per la correzione del Basis Set Superposition Error.

Nella sezione 1.3 viene esaminata la procedura computazionale utilizzata, e le specifiche del codice

impiegato.

• • •

The theoretical treatment of chemical reactions is, in principle, well established. It starts by

considering the overall system as made of various fragments depending on the values of the inter-

nuclear distances (which are arranged differently in the reactant and product arrangements). The

system is then modeled as an ensemble of M nuclei (each nucleus is considered as a single entity)

and N electrons. At this point, the equations deriving from the first principles are written by properly
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6 Section 1

formulating an Hamiltonian operator Ĥ and a mathematical function Ψ (called system wavefunc-

tion) that has the property of describing the spatial and temporal distribution of the system.

1.1 The Born-Oppenheimer separation

The general expression of the (non relativistic) hamiltonian describing the evolution from reac-

tants to products for a reactive system with M nuclei and N electrons is given by:

Ĥ = −
N
∑

i=1

!2

2me
∇2

i −
M
∑

A=1

!2

2MA
∇2

A

−
N
∑

i=1

M
∑

A=1

ZAe2

r∗iA
+

N
∑

i=1

N
∑

j>i

e2

r∗ij
+

M
∑

A=1

M
∑

B>A

ZAZBe2

R∗
AB

(1.1)

where ! = h/2π (with h being the Planck’s constant), me is the mass of the electron, MA is the

mass of the nucleus A, e is the charge of the electron, ZAe is the charge of the nucleus A, r∗iA

is the distance between the electron i and the nucleus A, r∗ij is the distance between the electrons

i and j, and R∗
AB is the distance between the nuclei A and B. In eq. 1.1 the first and the second

terms represent the electronic and the nuclear (differential) kinetic operators, respectively, while

the third, the fourth and the fifth terms represent attraction between electrons and nuclei, repulsion

between electrons and the repulsion between nuclei coulombic potential (multiplicative) operators,

respectively.

The general description of the position of the system at any instant, is given by the wavefunction

Ψ(R∗, r∗, t) which is solution of the time-dependent Schrödinger equation:

ĤΨ(R∗, r∗, t) = i!
∂

∂t
Ψ(R∗, r∗, t) (1.2)

where R∗ and r∗ represent collectively the nuclear and the electronic position vectors, respectively,

referred to an arbitrary system of reference.

The solution of equation 1.2 is extremely difficult and cannot in general be expressed in a closed

form. To simplify the equation one may consider to adopt decoupling and/or simplification schemes.

Usually, the first move is to separate the center of mass (c.m.) of the system. Then, one exploits

the fact that the nuclei are much heavier than the electrons and introduces the approximation of

separating the nuclear from the electronic motion (Born-Oppenheimer approximation). Finally one

adopts an appropriate technique to integrate related equations.
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Theory and computation for electronic structure calculations 7

The first step of decoupling the equations for the center of mass is based on the fact that its motion

remains unaltered when no external forces act on the system. Accordingly, one can express the

hamiltonian as a sum of terms referred to the c.m. and a sum of terms associated with the relative

motion of the particles. To this end a new system of unstarred position vectors referred to the

position vector of the c.m. S can be defined [1]:

S =
1

Mtot

(

M
∑

A=1

MAR∗
A +

N
∑

i=1

mer∗i

)

≈
1

M0

M
∑

A=1

MAR∗
A

ri = r∗i − S i = 1, . . . , N

RA = R∗
A − S A = 1, . . . ,M

where M0 represents the total mass of the nuclei, M0 =
∑M

A=1 MA, and Mtot is the total mass of

the system, Mtot = M0 + Nme. The ri vector indicates the position of the electron i with respect

to the c. m. and the RA vector indicates the position of the nucleus A with respect to the c.m. Since

the mass of the system is in practice almost entirely localized in the nuclei, the position vector of

the center of mass, S, can be approximated by the position vector of the center of mass of the nuclei

only.

By placing the center of mass at the origin of the coordinate system one has that the coordinate of

one of the atoms of the system (say C) is related to the position of all the other atoms (A ̸=C) as

follows:

RC = −
1

MC

M
∑

A=1,A ̸=C

MA RA

Using these new coordinates, the hamiltonian operator can be written as:

Ĥ = −
!2

2Mtot
∇2

S −
!2

2

(

1

me
+

1

M0

) N
∑

i=1

∇2
i −

!2

2M0

N
∑

i=1

N
∑

i>j

∇i∇j

−
!2

2

M
∑

A=1,A ̸=C

(

1

MA
+

1

M0

)

∇2
A +

!2

2M0

M
∑

A=1,A ̸=C

M
∑

B>A,B ̸=C

∇A∇B

−
N
∑

i=1

M
∑

A=1

ZAe2

riA
+

N
∑

i=1

N
∑

j>i

e2

rij
+

M
∑

A=1

M
∑

B>A

ZAZBe2

RAB
(1.3)

It is important to emphasize here that since the electrostatic interaction between nuclei and electrons

depends on their relative distance, the last three terms of this expression coincide with those of

eq. 1.1. The only term dependent on the center of mass coordinates is the first one which represents

the translational motion of the whole system and therefore it simply adds a constant to the total

energy of the reactive system.
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8 Section 1

The second step of separating the the equations of the nuclei from those of the electrons (the already

mentioned Born-Oppenheimer (or adiabatic) approximation, based on the fact that since the mass

of the nuclei is much larger than that of the electrons allowing so far the electrons to move around

quite a lot in the time it takes the nuclei to move a short distance) can be tackled by rewriting the

hamiltonian of eq. 1.3 (after the separation of the center of mass motion) as follows:

Ĥ = T̂N + T̂e + UeN + Uee + UNN = T̂N + Ĥe (1.4)

where Ĥe = T̂e + UeN + Uee + UNN with

T̂N = −
!2

2

M
∑

A=1

(

1

MA
+

1

M0

)

∇2
A +

!2

2M0

M
∑

A=1

M
∑

B>A

∇A∇B

T̂e = −
!2

2

(

1

me
+

1

M0

) N
∑

i=1

∇2
i −

!2

2M0

N
∑

i=1

N
∑

j>i

∇i∇j

UeN = −
N
∑

i=1

M
∑

A=1

ZAe2

riA
Uee =

N
∑

i=1

N
∑

j>i

e2

rij
UNN =

M
∑

A=1

M
∑

B>A

ZAZBe2

RAB

In a solution scheme in which the Schrödinger equation 1.2 is integrated by expanding the total

wavefunction as a linear combination of the electronic functions Φn(r;R) as follows:

Ψ(R, r, t) =
∑

n

χn(R, t) Φn(r;R) (1.5)

where the coefficients of the expansion, the nuclear functions χn(R, t), depend on time and on

the nuclear coordinates only, while the electronic functions Φn(r;R) depend on both the electronic

coordinates and (parametrically) on the nuclear coordinates, one has first to construct the set of Φn

electronic eigenfunctions (at all the needed fixed values of R (adiabatic representation)) by solving

the eigenvalue (En) problem:

Ĥe Φn(r;R) = En Φn(r;R) (1.6)

1.2 Theory and computation

By replacing eq. 1.5 in the Schrödinger equation 1.2 one obtains:
(

T̂N + Ĥe

)

∑

n

Φn(r;R) χn(R, t) = i!
∑

n

Φn(r;R)
∂

∂t
χn(R, t) (1.7)

Multiplying this expression by Φ∗
n′ , integrating over electronic coordinates and considering the

orthonormality of the basis functions (⟨Φn|Φn′⟩ = δnn′), eq. 1.7 can be written for a given electronic
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state n as:

[

Enn + ânn + b̂nn + T̂N

]

χn(R, t) +
∑

n′ ̸=n

ĉnn′χn′(R, t) = i!
∂

∂t
χn(R, t) (1.8)

being

ĉnn′ = Enn′ + ânn′ + b̂nn′

Enn′ = ⟨Φn(r;R)|Ĥe|Φn′(r;R)⟩

ânn′ = −
!2

2

M
∑

A=1

(

1

MA
+

1

M0

)

⟨Φn|∇2
A|Φn′⟩+ 2⟨Φn|∇A|Φn′⟩∇A

b̂nn′ =
!2

2M0

M
∑

A=1

M
∑

B>A

⟨Φn|∇A∇B|Φn′⟩+ 2⟨Φn|∇A|Φn′⟩∇B

Accordingly, Equation 1.8 contains non-diagonal terms. The non-diagonal terms ĉnn′ represent the

coupling between different adiabatic electronic states, the non-diagonal terms Enn′ represent the

interactions between electronic states while ânn′ , b̂nn′ are the electronic state coupling elements

associated with nuclear motion. The diagonal terms Enn(R) (or simply En(R)) are the energies

of the electronic states for different nuclear positions, that is, the adiabatic potential energy surface

(PES) for the electronic state n.

Equation 1.8 formulates rigorously the coupled Schrödinger equation for the nuclear wavefunction

in the adiabatic representation. The direct calculation of the nonadiabatic coupling, however, is

a very difficult task in quantum chemistry and the strength of the adiabatic representation lies in

neglecting the off-diagonal ĉnn′(n ̸= 0) coupling terms. Moreover the diagonal terms ânn and

b̂nn are usually small and most often negligible. As a result, one lands into the need for solving

decoupled differential equation for each value of n:

[

T̂N(R) + En(R)
]

χn(R, t) = i!
∂

∂t
χn(R, t) n = 0, 1, 2, ... (1.9)

where n is the label of the given adiabatic single potential energy surface En(R). In the remainder

of the thesis we shall consider only reactionis taking place on the ground electronic state and this

will allow us to drop the electronic state index.

The physical meaning of the assumption on which the adiabatic approximation is based is

simple: the slow nuclear motion only leads to the deformation of the electronic states but not to

transitions between them. The electronic wavefunction deforms instantaneously to adjust to the

slow motion of nuclei. The general criterion for the validity of the adiabatic approximation is that

the nuclear kinetic energy be small with respect to the energy gap between electronic states such
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10 Section 1

that the nuclear motion does not cause transitions between electronic states. This approximation

is good enough when one is dealing with low translational energy collisions and in this case it is

possible to study the dynamics of the collisions as occurring on a single adiabatic potential energy

surface. However, sometimes, there are regions of the PES in which the nonadiabatic coupling is

far from being negligible and it is necessary to consider the influence of other electronic states on

the adiabatic one.

1.2.1 Møller-Plesset perturbation theory

The Møller-Plesset (MP) perturbation theory (PT) is known to be a good compromise between

accuracy and computational cost. The major problem of the MP method is that convergence of the

MP series is not guaranteed a priori [2–4].

The Møller-Plesset theory is a special application of the Rayleigh-Schrödinger (RS) perturba-

tion theory. In the common perturbation theory one considers an unperturbed Hamiltonian Ĥ0 to

which a small perturbation V̂ is added. In MP theory the zero-order wave function is an exact

eigenvalue of the Fock operator which is taken as the unperturbed operator and the perturbation is

considered as the ”correlation operator”. In perturbation theory we could express the Schrödinger

equation as
(

Ĥ0 + V̂
)

| ψ⟩ = E | ψ⟩ (1.10)

and the wave function and the perturbed energy as power series:

| ψ⟩ =
∞
∑

i=0

| ψ(i)⟩ (1.11)

E =
∞
∑

i=0

E(i) (1.12)

As a result from the eq. 1.10 one can obtain a form for the energy corrections:

E(i+1) = ⟨ψ(0) | V̂ | ψ(i)⟩ (1.13)

which are easy to calculate once the wave function’s correction is determined. In the RS-PT each

term of the eq. 1.11 is expressed as:

| ψ(i)⟩ =
1− | ψ(0)⟩⟨ψ(0) |

E(0) − Ĥ0

[

(V̂ − E(1)) | ψ(i−1)⟩ −
i−1
∑

k=2

E(k) | ψ(i−k)⟩

]

(1.14)
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If we consider the perturbation operator as the difference between the real Hamiltonian and the Fock

operator:

V̂ = −
∑

i

[

Ĵ(i)− K̂(i)

]

+
∑

i>j

1

rij
(1.15)

we obtain the formalism of the Møller-Plesset Perturbation Theory where the zeroth-order energy

is the sum of the orbital’s Fock energy:

EMP0 = 2

N/2
∑

i=1

ϵi (1.16)

and the zeroth plus first order correction yields the Hartree Fock (HF) energy. In order to obtain the

MP2 formula for a closed-shell molecule, the second order RS-PT formula is written on basis of

doubly-excited Slater determinants. (Singly-excited Slater determinants do not contribute because

of the Brillouin theorem):

EMP2 =
∑

a>b
p>q

| Vab[pq] |2

ϵp + ϵq − ϵa − ϵb
(1.17)

where ϵp, ϵq are the energies of the p-th and q-th occupied orbitals, while ϵa, ϵb are the energies of

the a-th and b-th unoccupied orbitals. In this way the total total electronic energy is given by the

Hartree-Fock energy plus the second-order MP correction:

E ≈ EHF + EMP2. (1.18)

1.2.2 Coupled Cluster method

The Coupled-Cluster (CC) method is one of the most popular post-Hartree-Fock ab initio quan-

tum chemistry methods in the field of computational chemistry due to its accuracy in treating elec-

tron correlation.

The coupled cluster method defines the exact wave function, solution of the time-independent

Schrödinger equation, as an exponential expression:

| Ψ⟩ = eT̂ | Φ0⟩ (1.19)

where | Φ0⟩ is a Slater determinant usually constructed from Hartree-Fock molecular orbitals, and

T̂ is the cluster operator. This operator can be expanded as a sum of cluster operators for each

excitation degree:

T̂ = T̂1 + T̂2 + T̂3 + ... (1.20)
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12 Section 1

more easily expressed in the second quantization formalism as:

T̂1 =
∑

a,r

traâ
†
râa

T̂2 =
∑

a<b
r<s

trs
abâ

†
râ

†
sâbâa (1.21)

T̂3 =
∑

a<b<c
r<s<t

trst
abcâ

†
râ

†
sâ

†
t âbâaâc

where tra, t
rs
ab, t

rst
abc, ... are the cluster amplitudes. Taking into consideration the structure of T̂ , the

exponential operator in 1.19 may be expanded into Taylor series:

eT̂ = 1 + T̂ +
T̂ 2

2!
+ ... = 1 + T̂1 + T̂2 +

T̂ 2
1

2
+ T̂1T̂2 +

T̂ 2
2

2
+ ... (1.22)

due to the finite size of the set of occupied molecular orbitals, as is for the number of excitations, the

series is finite in practice. In order to simplify the task of finding the coefficients t, the expansion of

T̂ is truncated at second order slightly higher level of excitation (rarely exceeding four).

CCSD approximation

The first level of approximation in CC methods consists of truncating the cluster expansion at

the double excitation: T̂ = T̂1 + T̂2, leading to the CC single and double (CCSD) approximation.

The following expression of the wave function is obtained:

| ΨCCSD⟩ = e(T̂1+T̂2) | Φ0⟩ =
(

1̂ + T̂1 + T̂2 +
1

2

(

T̂1 + T̂2
)2

+
1

3!
(T̂1 + T̂2

)3
+ ...

)

| Φ0⟩ (1.23)

In order to evaluate the correlation energy and the cluster amplitude we have to project the equation:
(

Ĥ − E0

)

e(T̂1+T̂2) | Φ0⟩ = Ecorre
(T̂1+T̂2) | Φ0⟩ (1.24)

on each excitation | Φrst...
abc...⟩ to be obtained for the correlation energy:

⟨Φ0 | Ĥ0 − E0 |
(

1̂ + T̂1 + T̂2 +
1

2
T̂ 2

1

)

Φ0⟩ = Ecorr (1.25)

and for the amplitudes:

⟨Φr
a | Ĥ0 −E0 |

(

T̂1 + T̂2 + T̂1T̂2 +
1

2
T̂ 2

1 +
1

3!
T̂ 3

1

)

Φ0⟩ = traEcorr (1.26)

and so on.

One of the most important features of this method is its size-consistency and its separability inde-

pendently from the truncation of the T̂ operator.
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Nowadays, there are different methods to go beyond double excitations and include the effect of

the triple excitation, in the exact, as CC single, double and triple (CCSDT) or approximate form,

such as CC3 or CCSD(T) (this last treats singles and doubles excitation fully while triples are cal-

culated using perturbation theory approach) that is the computational procedure used routinely in

the present Thesis.

1.2.3 Basis Set Superposition Error

The interaction energies between two monomers A and B, are typically calculated as the energy

difference between the product complex AB and its components A and B:

∆E(R̂) = E(AB, R̂){ab} − E(A){a} − E(B){b}. (1.27)

where R̂ is the intermolecular distance, and the symbols {..} represent the applied basis-set for the

calculation. These types of calculations, using finite basis sets, are susceptible to Basis Set Super-

position Error (BSSE).

As the two monomers approach each other, their basis functions overlap and this leads to a stabi-

lization of the complex. This is due to the fact that the description of A in the complex is improved

by the presence of the basis function of B which are different from zero in the space region around

A and the same is for B. In the eq. 1.27 the short-range energies from the mixed basis sets must

be compared with the long-range energies from the unmixed sets, and this mismatch introduces an

error in the evaluation of the binding energy.

The BSSE is tightly connected to the dimension of the basis set. The use of a small basis set, in

fact, excessively stabilizes the complex with respect to the isolated monomers and brings to a large

BSSE.

Two methods exist to eliminate this problem: the chemical Hamiltonian approach (CHA) and the

counterpoise procedure (CP) proposed by Boys and Bernardi [5]. The CHA replaces the conven-

tional Hamiltonian with one that prevents basis set mixing a priori, by removing all the projector-

containing terms which would allow basis set extension. The counterpoise approach, instead, esti-

mates the magnitude of the BSSE by performing an additional calculation on each isolated fragment

including the basis set of both the monomers. This energy is then subtracted to the energy of the

isolated monomer to obtain:

BSSE = E(A){a} − E(A, R̂){ab} + E(B){b} − E(B, R̂){ab}. (1.28)
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This correction is at the end added to the interaction energy (see Eq. 1.27) to obtain the CP corrected

energy:

∆ECP (R̂) = E(AB, R̂){ab} − E(A, R̂){ab} − E(B, R̂){ab}. (1.29)

1.3 Used Computational Procedures

The key goal of quantum chemistry (QC) is to implement the developed theoretical methods

as computational procedures aimed at predicting and interpreting the actual electronic structure and

reactivity of real chemical systems. Current ab initio calculations originate from the Self-Consistent

Field (SCF) method proposed by Hartree and Fock in 1930 to overcome the impossibility of working

out exact solutions of the Schrödinger equation for many electron systems. However, the SCF cal-

culations were not to become operative until the introduction of the Linear Combination of Atomic

Orbital (LCAO) approximation. The introduction of basis sets transformed the numerical prob-

lem of solving integro-differential equations into that of solving linear algebra equations which is

limited only by the availability of sufficient data storage and efficient computing algorithms. For

this reason, the development of more accurate ab initio approaches is tightly bond to the evolution

of computer technologies. In 1970, thanks also to significant ICT improvements due to the intro-

duction of extended capacities in memory handling and CPU operating associated with the advent

of mainframes, the Multi Configurational (MC) SCF methods were developed. MCSCF methods

amend the inability of the classical SCF method to describe bond breaking and unpaired electrons.

However, as shown by the Figure 1.1, SCF is only the first step towards an accurate description of

most chemical systems. It suffers in fact for the drawback of describing the electronic motion in

terms of the average field of the other electrons and is therefore unable to correlate the different

motions (although this can still be included ex post even if one starts from an orbital set obtained

from an SCF or an MCSCF treatment. Related methods are often referred to as post Hartree-Fock

and belong to three main categories: Configuration Interaction (CI), CC and PT methods. The in-

crease of computer power has allowed these method to become widespread and many algorithms to

be developed to optimize geometries, to locate transition states and to calculate observable proper-

ties. Nowadays, this type of program packages are available for distribution and the development of

infrastructures like Grid or the increased availability of cost effective Parallel Computing are con-

tinuosly increasing their popularity.

Among these packages GAUSSIAN [6] is the most widely used because of its various options. It

was developed by John Pople and his work group. First available through the Quantum Chem-
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Figure 1.1: Flux diagram of an ab initio procedure for a wave function-based method.

istry Program Exchange, since 1987 it has been developed and licensed by Gaussian, Inc. and is

presently implemented on the Grid platform of the Computational Chemistry Cluster of wich details

will be given in chapter 3. Among the other programs developed for the same purpose we mention

here DALTON [7] and GAMESS-US (R3) [8] because of their availability on the above mentioned

Grid platform. In particular DALTON allows an accurate evaluation of magnetic and (frequency-

dependent) electric properties and is particularly suited to study potential energy surfaces, both for

static and dynamical investigations. On its side GAMESS is particularly suited for simple systems

and has been used in my thesis work for which reason is analyzed here in more details.

1.3.1 GAMESS-US

GAMESS is a program for ab initio molecular quantum chemistry whose name stands for ”Gen-

eral Atomic and Molecular Electronic Structure System”. The original version of the program led in

1981 to the two GAMESS-UK [9] and GAMESS-US packages [8]. The GAMESS-US package is

at present maintained by the members of the Gordon research group at Iowa State University. This

program can perform SCF calculations using RHF (restricted HF), UHF (unrestricted HF), ROHF

(restricted open-shell HF), GVB (Generalized Valence Bond) and MCSCF methods. The correla-

tion energy to the related SCF wavefunctions could be calculated using different methods, ranging

from Möller-Plesset Perturbation Theory to Coupled-Cluster (including also the density functional

thoery (DFT) ones). GAMESS enables the calculation of the nuclear gradient for automatic geom-
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etry optimization, transition state searches, or reaction path following. Using GAMESS it is also

possible to calculate vibrational frequencies with a computation of the hessian, or simulate solvent

action with different methodologies such as Polarizable Continuum Model. For very large systems

the Fragment Molecular Orbital method, implemented in the latest version of the program, permits

the use of many of the previous treatments by dividing the computation in small fragments. The

computational tasks of the program are listed in Table 1.1. As shown by the table the outcomes of

the various tasks of the package are mainly the electronic energy of the geometry considered and

its gradient with respect of the nuclear coordinates (for the SCF also the Hessian is delivered). The

listed properties are computable using the basic SCF (without inclusion of the correlation energy),

MP2, CI, CC, DFT, time dependent (TD) DFT, equation of motion (EOM) coupled-cluster or semi-

empirical (MOPAC) methods.

SCFTYP = RHF ROHF UHF GVB MCSCF

SCF Energy CDpF CDp CDp CDp CDpF
SCF analytic gradient CDpF CDp CDp CDp CDpF
SCF numerical Hessian CDpF CDp CDp CDp CDp
SCF analytic Hessian CDp CDp - CDp Dp
MP2 energy CDpF CDp CDp - CDp
MP2 gradient CDpF Dp CDp - -
CI energy CDp CDp - CDp CDp
CI gradient CD - - - -
CC energy CDpF CD - - -
EOM energy CD - - - -
DFT energy CDpF CDp CDp - -
DFT gradient CDpF CDp CDp - -
TD-DFT energy CDpF - CDp - -
TD-DFT gradient CDp - - - -
MOPAC energy yes yes yes yes -
MOPAC gradient yes yes yes - -

Table 1.1: Table from GAMESS-US manual. C=conventional storage of integrals on disk; D= direct

AO integral computation; P=parallel execution; F=Fragment MO compatibility.

The main reasons for choosing GAMESS to carry out the ab initio calculations of my thesis work

are (behind its intrinsic qualities) its free availability and the existence of a validated distributed
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version on the segment of the EGEE Grid infrastructure available to the virtual organizations (VO)

COMPCHEM and VOCE (of wich further details will be given in section 3). An important advan-

tage of performing calculations on the Grid is the fact that we can construct the PES by calculating

the energies associated to all relevant geometries ”at the same time” with a considerable reduction of

the wall clock computing time. GAMESS runs on any Linux-based system with the use of a script

which passes the input (a formatted text file) to the program. The output produces two files: the

”.log” file, which contains the result of each step of the calculation and the ”.dat” file which contains

all the vectors, the coordinates and the hessian matrix in a formatted structure. In the followings we

analyze in detail a simple GAMESS input showing the most important options adopted for a single

geometry energy calculation.

1.3.2 GAMESS bench input

The input needed for a typical run of the GAMESS program is a simple text file. It is modular

and its variables are arranged in groups so as to permit to control the different options of the calcu-

lation.

In the following lines a typical input for a single energy calculation on a space fixed chemical system

are shown
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$CONTRL SCFTYP=RHF CCTYP=CCSD(T) RUNTYP=ENERGY COORD=UNIQUE UNITS=ANGS \\

$END

$SYSTEM MWORDS=500 $END

$BASIS GBASIS=STO NGAUSS=3 $END

$GUESS GUESS=HUCKEL $END

$DATA

CCSD(T) energy calculation / Basis-set: STO-3G

Cnv 2

N1, 7, 0, 0, 0.5471693

N2, 7, 0, 0, -0.5471693

N3, 7, 0, 0.5471693, 4.1

$END

in which all commands have a $ character in the second column and are closed by a $END tag.

In the list only a few of the many options present in the INPUT description chapter of the official

manual available from the Gordon Research Group website [10] are given. In the followings a brief

description of the most relevant options among those we used for the calculations is given:

$SYSTEM is the group that allows the control of the information for the computer’s operations

like the job’s time limit, the replicated memory availability and other platform dependent informa-

tion.

$CONTRL is the most important group containing the basic options of the job. With SCFTYP

and RUNTYP one can decide the type of wavefunctions and the type of calculations to be performed

(energy, optimization, hessian, etc.). In this group the units (UNITS), which type of coordinates to

be used to define the system (COORD), the correlation energy correction method (CCTYP MPLEVL CITYP

etc.) and other useful options can be chosen.

$BASIS is the group allowing an easy use of the most common basis set families available for

quantum chemistry calculations. If this group is missing, the basis set form of each atom must be

given in the $DATA group.
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$GUESS is the group that indicates the method used by the program for calculating the initial

Molecular Orbitals which will be optimized throughout the calculation.

$DATA is the group in which the system must be specified. This group describes the total

molecular data such as point group symmetry, nuclear coordinates and possible basis set. In the

first line of this group a title for the job must be given; in the second line the Schoenflies symbol

indicating the symmetry group the system belongs to must be given. Subsequent lines contain the

position coordinates of the nuclei given in the form specified by the COORD= option in the $CONTL

group.

1.3.3 GAMESS bench output

As already mentioned, GAMESS produces two principal output files: the .log and the .dat

files. The .log contain all the information that the job produces such as the energy, the final ge-

ometry of an optimization process, the corresponding molecular orbitals etc. while .dat contains

formatted numerical data such as MO vectors ($VEC), gradient ($GRAD) or hessian ($HESS) useful

to restart incomplete runs or the subsequent step of a multi step process (like the saddle point search

which might take, for example, several optimization and hessian computations).

All the relevant information resulting by a QC calculation is contained in the log file. In the

following we are going to describe more in detail the most important section of this file for an input

of the type described in the previous section.

GAMESS is believed to have the most verbose (though helpful) output files among all the electronic

structure software packages. All the information are grouped in different section with a verbose de-

scription of what is happening.

The first part of the log file summarizes some basic information of the system under inspection.

After an echo of the input file, the program shows:

- the point group symmetry of the system

- the geometry of the system in Cartesian and Z-matrix fashion and the relative internuclear
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distances

- an explicit description of the basis set with a list of the alpha values and contraction coeffi-

cients

- the computational characteristics of the run

The sequence of computational steps undergone by the program are shown in the remaining

part of the output file. That are:

- routine for the calculations of the one and two electrons integrals

- the result of each iteration of the SCF calculation specify the energy and the density conver-

gence of every step

- molecular orbital information (such as coefficients of the LCAO, the energy and the symme-

try)

- the properties of the self-consistent field wavefunction (Mulliken poulation analysis, electro-

static moments, etc.)

- the result of the method for determining the correlation energy (if required).
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Chapter 2

Theory and computation for nuclei
dynamics: the atom diatom case

In questo capitolo sono raccolti i fondamenti teorici per lo studio della dinamica dei nuclei per

sistemi atomo-diatomo. Nella prima sezione vengono esaminate le equazioni di base dello scatter-

ing quantistico e la formulazione dei sistemi di riferimento Space e Body fixed.

Nelle sezioni 2.2 e 2.3 vengono descritte nel dettaglio le equazioni fondamentali del metodo Time

Dependent e le tecniche utilizzate per propagare ed analizzare il pacchetto d’onda. Nelle sezioni

2.4, 2.5 e 2.6 vengono descritte nel dettaglio le equazioni fondamentali del metodo Time Indepen-

dent, la scelta e le proprietà delle coordinate ipersferiche nonch’è le tecniche utilizzate per propa-

gare ed analizzare la soluzione. Nella sezione 2.7 vengono discussi i metodi utilizzati per ricavare

le osservabili dai risultati di un calcolo di dinamica quantistica.

• • •

To specialize the formalism of quantum reactive dynamics to deal with atom-diatom systems, in

the followings details will be given about the coordinate system used for the hamiltonian represen-

tation, the reference system employed for the hamiltonian representation, the coupled differential

equations integrated to calculate the scattering amplitudes, to conclude with the methods used to

estimate observable properties out of scattering results.
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2.1 Atom diatom equations for the nuclei

The atom-diatom systems are a particular case of the three atom ones in which two atoms (say

B and C) are bond together while the third one (say A) is considered as free (it is obviously arbitrary

the way of naming each atom). In a generic atom-diatom reaction A + BC there are three possible

processes: A + BC → A + BC (elastic and inelastic non reactive collisions), A + BC → B + AC

and A + BC → C + AB (atom exchange reactive collisions). The three processes are known as

rearrangement ones and do not include the A + BC→ A + B + C dissociation that needs a different

treatment. Each of the three processes is usually named a, b and c, respectively after the free atom

notation.

2.1.1 The Jacobi vectors

In rearrangement processes, once the separation of the center of mass is performed, the relative

motion of the three atoms can be defined using three different systems of Jacobi internal vectors.

These three systems are displayed in Figure 2.1. As apparent from the Figure, the definition of the

vectors is cyclical with respect to the assignment of the A, B and C labels to the atoms and most

often (like hereafter) instead of a, b and c labels the generic indices λ, ν and κ are used. The Jacobi

vectors are defined as:

Rλ = xλ −
Mνxν + Mκxκ

Mν + Mκ
rλ = xκ − xν (2.1)

where M and x are, respectively, the atomic masses and the atom position vectors referred to the

center of mass of the system.

The Rλ Jacobi vector represents the vector between the atom λ and the center of mass of the

molecule νκ and the rλ vector corresponds to the internuclear vector between the atom ν and the

atom κ. The angle Θλ formed by Rλ and rλ is:

Θλ = arccos
Rλ rλ
|Rλ||rλ|

(2.2)

Obviously, the range of vector values included between the pair |Rλ|=0, |rλ|=0 and the pair |Rλ|→

∞, |rλ| = finite, defines the rearrangement channel λ. The relationship between the three sets of

Jacobi vectors is defined by the transformation (called kinematic rotation) depending only on the

atomic masses:
(

Rν

rν

)

=

(

cos βνλ − sinβνλ

sinβνλ cos βνλ

)(

Rλ

rλ

)

(2.3)

VIRT&L-COMM.9.2016.3

ISSN: 2279-8773



Theory and computation for nuclei dynamics: the atom diatom case 23

R

R

R

B
r

r

Θ

Θ

A
BC

C

A

B

A

C
A

r
Θ

B

C

Figure 2.1: Definition of the Jacobi coordinates.

where

cos βνλ =

[

MλMν

(Mλ + Mκ) (Mν + Mκ)

]1/2

sinβνλ =

[

Mκ (Mλ + Mν + Mκ)

(Mλ + Mκ) (Mν + Mκ)

]1/2

In chemical reaction dynamics the angle βνλ is known as the skewing angle and represents the

rotational angle between the Jacobi vectors of different rearrangement channels.

Using the Jacobi vectors the Schrödinger equation 1.9 of the nuclei can be formulated as:

[

−
!2

2µλ,νκ
∇2
Rλ
−

!2

2µνκ
∇2
rλ + V (Rλ, rλ)

]

Ψλ(Rλ, rλ, t) = i!
∂

∂t
Ψλ(Rλ, rλ, t) (2.4)

where µλ,νκ is the reduced mass for the triatom in the λ+ νκ arrangement, µνκ is the reduced mass

for the diatom νκ and λ is the label indicating the rearrangement channel and the related wavefunc-

tion. Obviously, wavefunction representations associated with different rearrangement channels are

equivalent. Nevertheless, the effectiveness of the various representations in describing the global

wavefunction varies with the different arrangement channels. For that reason, in reaction dynam-

ics the global wavefunction can be obtained by determining its form for the three rearrangement

channels and then matching them properly.
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Figure 2.2: Space fixed (primed axes) and body fixed (unprimed axes) reference frames.

2.1.2 Space and Body Fixed reference coordinate frame

The choice of a reference coordinate system is another key element of a rigorous quantum

treatment of reactive collisions. The choice of a suitable spatial orientation of the reference axis

coordinate frame allows a proper exploitation of the properties of the algebra of angular momenta.

In fact, in an atom-diatom system, the total angular momentum, J = lλ + jλ, is conserved. How-

ever, both the orbital angular momentum, lλ, (corresponding to the motion of the atom around the

diatom) and the rotational angular momentum, jλ, (corresponding to the rotation of the νκ diatom)

vary significantly especially in the regions where the rearrangement of reactants to products occurs.

Therefore, a formulation based on the total angular momentum can provide great advantages in the

global treatment.

The two popular choices of the reference system in quantum dynamics are the space fixed (SF) and

the body fixed (BF) ones [11–16]. Figure 2.2 sketches the two reference systems. The SF reference

system is denoted as OX#Y #Z# while the BF one as OXY Z . Both reference frames are centered

in the center of mass of the global system. In the SF frame the axes always lay in a fixed direction in

space (with no change during the process). On the contrary, in the BF frame the direction of the axes

varies continuously in order to follow the molecular motion in a way that, for example, its reference

axis for quantization (say the axis Z) always coincides with the Jacobi vector R. Therefore, while

in the SF frame the quantization axis remains fixed, in the BF frame it follows the motion of the R

vector.
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In the SF representation the coordinates used to describe the Jacobi vectors R#
λ and r#λ are R#

λ ,

θRλ
, ϕRλ

, r#
λ , θrλ

and ϕrλ
, where R#

λ and r#
λ are the vector moduli and θRλ

, ϕRλ
, θrλ

and ϕrλ

are the associated polar and azimuthal angles in a polar representation (and XRλ
, YRλ

and XRλ
and

Xrλ , Yrλ and Xrλ in a cartesian representation).

In the BF representation the coordinates used to describe the Jacobi vectors are the vector

moduli Rλ and rλ, the angle Θλ formed by the Rλ and rλ vectors and three angles, ϕλ, θλ and ψλ,

which describe the Z axis orientation and are called Euler angles. For simplicity, the three atoms

are placed onto the X#Z# plane (i.e., the Euler angle ψλ is set to zero).

The choice of the reference frame allows us to write the Schrödinger equation 2.4 in a more explicit

way. In the SF frame it results in atomic units (! = 1):
[

−

(

1

2µRλ

∂2

∂R#2
λ

+
1

2µrλ

∂2

∂r#2
λ

)

+
l̂2λ

2µRλ
R#2

λ

+
ĵ2
λ

2µrλ
r#2
λ

(2.5)

+ V (Rλ, rλ,Θλ)] Ψλ
(

R#
λ , r#λ , t

)

= i!
∂

∂t
Ψλ
(

R#
λ , r#λ , t

)

and in the BF frame it results:

[

−
(

1

2µRλ

∂2

∂R2
λ

+
1

2µrλ

∂2

∂r2
λ

)

+

(

Ĵ − ĵλ

)2

2µRλ
R2

λ

+
ĵ2
λ

2µrλ
r2
λ

(2.6)

+ V (Rλ, rλ,Θλ)]Ψλ (Rλ, rλ, t) = i!
∂

∂t
Ψλ (Rλ, rλ, t)

where the reduced mass for the triatomic λ+νκ system is represented by µRλ
and the reduced mass

for the diatomic νκ system by µrλ
.

The main difference between the SF and BF formulation of the Schrödinger equations is that

the orbital angular momentum, lλ, cannot be used in the BF representation because the l̂2 operator

does not commute with the hamiltonian operator. Therefore in the BF equation the orbital angular

momentum lλ is rewritten as J − jλ. In other words, in the SF formulation the wavefunctions are

eigenfunctions of the Ĵ2, ĴZ# , ĵ2 and l̂2 operators, being JZ# the projection of the total angular

momentum onto the Z# axis. In the BF representation the wavefunctions are eigenfunctions of Ĵ2,

ĴZ# , ĵ2 and ĴZ , where with respect to the SF representation l̂2 is replaced by the projection of J

onto the Z axis (usually called helicity) and its quantum numbers are denoted by Ωλ. Since lλ and

Rλ are orthogonal, the quantum number Ωλ also represents the quantum number for the projection

of the rotational angular momentum jλ onto the BF Z axis.

In both SF and BF formulations the PES is represented as a function of Rλ, rλ and Θλ because the

interaction depends only on the relative positions of the atoms. Other sets of three coordinates, such
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as the three internuclear distances, can also be used and are often preferred for particular purposes

(like for graphical representations of the potential energy surface).

The quantum formulations of reactive collisions in either SF or BF frames are, obviously, formally

equivalent and the relationships between the wavefunction in both approaches is a unitary trans-

formation. Nevertheless, the practical suitability of each formulation depends on the nature of the

considered process. Thus, while the BF frame is more adequate for close collisions and strong

interaction processes, the SF one is more convenient for the description of weak interactions and

processes taking place at long distance.

2.1.3 The partial wave expansion

To integrate the Schrödinger equations 2.5 or 2.6, the approach more generally used in quan-

tum reaction dynamics is to expand the overall wavefunction in terms of partial waves. In the SF

representation the total angular momentum operators, Ĵ2, and its Z# component, ĴZ# , commute

between each other and with the hamiltonian. Therefore, they are a constant of the motion. Thus,

the eigenfunctions of Ĵ2 and ĴZ# , with eigenvalues J(J +1) and M , can be used to form the partial

wave basis of ΨJM
λ to expand the wavefunction as follows:

Ψλ
(

R#
λ , r#λ , t

)

=
∞
∑

J=0

J
∑

M=−J

CJM
λ ΨJM

λ

(

R#
λ , r#λ , t

)

(2.7)

where the coefficients CJM
λ are the Clebsch-Gordan coefficients.

Then the partial waves ΨJM
λ are further expanded in terms of the BF wavefunctions ψJΩλ

λ as:

ΨJM
λ

(

R#
λ , r#λ , t

)

=
J
∑

Ωλ=−J

DJ
MΩλ

(ϕλ, θλ, 0) ψJΩλ
λ (Rλ, rλ,Θλ, t) (2.8)

where the DJ
MΩλ

(ϕλ, θλ, 0) coefficients are the Wigner rotation matrix elements performing the

transformation from the SF reference system to the BF one (please notice that we deal with a BF

representation in which ψλ = 0).

At this point it is convenient to indicate that the wavefunctions ψJΩλ

λ have a parity (−1)p =

(−1)(jλ+Jλ−Ωλ) with respect to inversion in space. Moreover, only the wavefunctions with the same

parity couple between each other. For this reason, it is possible to separate the coupled equations in

two groups, one for the even parity wavefunctions and the other for the odd parity wavefunctions.

This feature contributes to further simplify the quantum treatment of the reactive collisions.
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2.2 Time-dependent (TD) quantum dynamics

A method that has rapidly emerged (though only in recent times) to calculate the BF wavefunc-

tions ψJΩp is the time-dependent (TD) or wavepacket (WP) one. The TD method allows to integrate

in a single run the Schrödinger equation for a given initial state of the reactants (or a given mixture

of them) and a range of energies by following the evolution in time of a WP initially shaped to de-

scribe the reactants’ configuration. Wavepackets have been used for quantum scattering calculations

since the late 1960’s [17–19]. However, they did not become popular until the late 1980’s due to

computer limitations [20]. Recent reviews of the wavepacket approach has been given by Sathya-

murthy et al. [21], Zhang [22] and Althorpe and Clary [23]. A wavepacket method propagating only

the real part of the wavepacket and resulting in a significant memory saving has been developed by

Gray and Balint-Kurti [24]. In most cases, the WP approach has only been used to calculate reac-

tion probabilities and integral cross sections, i.e. quantities depending only on the modulus of the

S matrix elements (see for example refs. [25–32]). However, Althorpe used a novel way to finesse

the coordinate problem and thus used the time-dependent method to calculate S matrix elements

themselves and differential cross sections for the H + H2 system [33]. Differential cross sections

are also calculalated by a new quantum wavepacket computer code (DIFFREALWAVE) recently

developed by Balint-Kurti et al..

2.2.1 The time dependent equation

More in detail, in the TD quantum dynamics, the overall solution strategy involves the follow-

ing three steps. First, an initial (t=0) wavefunction ψ(R, r, t) that describes the range of energies

and initial conditions that one wants to simulate is chosen. The wavefunction is usually called

wavepacket and is most often is formulated in Jacobi coordinates, R and r (either of the reactants

or of the products or even initially of the reactants and then, after a certain time, of the products).

Second, the TD Schrödinger equation

i!
∂ψ(R, r, t)

∂t
= Ĥψ(R, r, t) (2.9)

is integrated in time for an interval long enough to describe the scattering process of interest. When

Ĥ is explicitly time-independent, as in laser free scattering cases, the formal solution of eq. 2.9 is

obtained as the time evolution of the wavepacket described by the equation

ψ(R, r, t + λ) = e−iĤλ/!ψ(R, r, t) (2.10)
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Third, the desired scattering information, such as the outgoing flux of the wavepacket deformation

is worked out. This calculation usually implies an expansion of the wavefunction in the product

basis functions in the asymptotic product region and the recovery of the scattering information out

of the related expansion coefficients.

One aspect of the method, which virtues have been realized only recently, is the fact that the hamil-

tonian Ĥ in eq. 2.9 can be replaced by any (single valued) function of Ĥ leading to the same

solution [24, 34]. If this function is chosen to be arccos(Ĥ), then the resulting solution making use

of the Chebyshev integration method is exact and exceptionally simple.

The initial wavepacket is often chosen to be a Gaussian function of the translational coordinate,

with mean velocity and width chosen to describe the range of interest. In making this choice, one

needs to consider how the spatial part of the Schrödinger equation is to be handled, i.e., whether the

dependence of the wavepacket on spatial coordinates has to be represented on a grid or in terms of

basis functions.

For the calculations of my thesis the quantum wavepacket code RWAVEPR developed in the

CDK laboratory [35–37] has been used. The code integrates the TD Schrödinger equation for the

generic atom-diatom reaction:

A + BC(v, j)→ AB(v′, j′) + C (2.11)

where v and j are the vibrational and rotational quantum numbers of the reactants (the analogous

quantities for products are primed) by propagating in time the complex wavepacket in time using

product coordinates. Then, state-to-state probabilities are calculated.

2.2.2 Wavepacket representation

A key problem of any quantum dynamical treatment is the selection of a suitable set of coor-

dinates to give an appropriate representation of the wavefunction. This selection is associated with

several aspects of the calculations. Namely, the definition of a continuity variable to use for inte-

grating the Schrödinger equation, the expansion of the wavefunction and the formulation of both

initial and final conditions. In TD approaches the problem of defining a suitable continuity variable

is easy to solve because the time itself is an ideal continuity variable. The crucial problem resides,

therefore, in the definition of both the initial and the final conditions of the wavefunction which in

reactive processes refer usually to different sets of coordinates since, as is the case of the Jacobi
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Figure 2.3: Reactant (unprimed) and product (primed) Jacobi coordinates for a triatomic system. Reactant
Jacobi coordinates are shown on the product Jacobi coordinates as dashed lines.

ones, they are arrangement dependent. In Figure 2.3 the reactant and product Jacobi coordinates

for a triatomic system used in this work are displayed. Obviously, initial conditions are properly

specified in the reactant coordinates, while any final state analysis, needed for instance to determine

the quantum state distribution of the products, must be performed in the appropriate set of product

coordinates. The most straightforward choice is to carry out the calculations using reactant coordi-

nates. This makes it immediate to define initial conditions. When one is interested in computing

the properties of the products the wavefunction has to be mapped onto the final diatomic molecule

wavefunctions and the related r′ coordinate has to be used. Accordingly, the wavefunction, initially

set up in reactant Jacobi coordinates R, r and Θ needs to be represented in the product ones R′, r′

and Θ′. Note that for simplicity the λ label used in previous notation and in Figure 2.1 has been

now replaced by umpriming (reactant) and impriming (product) the Jacobi coordinates.

In principle, the analysis of the wavefunction in the product region requires at each step of

the evolution a mapping of the wavefunction onto the product coordinates. As an alternative one

can transform the entire wavepacket onto a product coordinate representation at a given appropriate

time, for example when the wavepacket is concentrated in the strong interaction region. The prop-

agation then proceeds in product coordinates which are suitable for the final state analysis. It may
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be also desirable, to reduce the computational effort, to perform a short propagation in the entrance

channel using reactant Jacobi coordinates and then transform the wavepacket to product Jacobi co-

ordinates [38]. Recently some interesting and efficient methods have been developed to perform the

transformation from reactant to product Jacobi coordinates [39].

2.2.3 The formulation of the initial wavepacket

As already mentioned, the wavepacket is usually expandend in terms of partial waves ψJΩp(R, r,Θ, t)

i.e. functions of the total angular momentum quantum number J and its projections Ω on the BF

quantization axis. Then, initially (t=0) the atom-diatom A + BC partial wave is formulated as (for

simplicity the parity index is dropped):

ψJΩ(R, r,Θ, t = 0) = χJ(R) ϕBC
vj (r,Θ) (2.12)

where the function χJ(R) represents the dependence on R of the initial wavepacket and the function

ϕBC
vj (r,Θ) is the the wavefunction of the initial rovibrational state of the molecule BC.

The function χJ(R) is expressed as a Gaussian function e−α(R−R0)2 , where R0 is the center

of the wavepacket, multiplied by a phase factor of the form e−ik0(R−R0) which gives the initial

wavepacket a relative kinetic energy, k0, towards the interaction region. This factor is made up

of appropriate incoming Ricatti-Hankel functions, thus avoiding the problem of having to start the

wavepacket propagation sufficiently far away from the centrifugal barrier. Therefore, the function

χJ(R) is formulated by:

χJ(R) = N e−α(R−R0)2 e−ik0(R−R0) h1
l (k(R−R0)) (2.13)

where k0 is the wavenumber which determines the relative kinetic energy of the collision partners

and h1
l is the Hankel function of the first order.

The function ϕBC
vj (r,Θ) is set up from a vibrational function φBC

v (r) multiplied by an angular

function:

ϕBC
vj (r,Θ) = φBC

v (r) PΩ
j (Θ) (2.14)

where PΩ
j (Θ) are the normalized associated Legendre polynomials.

The function of eq. 2.13 describes a Gaussian wavepacket traveling inwards with an average

momentum of k0!. The wavepacket is localized in space. Due to Heisenberg uncertainty Principle
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this means that it has a spread in momentum (or kinetic energy). Since the total energy is a constant

of motion, each portion of the wavepacket with a definite total energy may be considered to scatter

independently of other parts of the same wavepacket which have different total energies.

In order to evaluate the reaction probability one needs to know which portion of the original

wavepacket has a particular total energy. This means that, since the internal energy is fixed, one

needs to know the amplitude of the initial wavepacket having a particular momentum (or kinetic

energy). This is obtained by a Fourier transform of the initial wavepacket:

g(k) =
1√
2π

∫ ∞

R=0
exp(−ikR) χJ(R) dR (2.15)

where χJ(R) is the gaussian wavepacket in space and g(k) is the component of wavepacket with

momentum k!.

2.3 The propagation of the wavepacket

To integrate eq. 2.9 one has to evaluate the action of the hamiltonian operator onto the partial

wavepacket ψJΩ(R, r,Θ, t). In an exact quantum time-dependent treatment the time differentiation

of the system wavefunction is related to the application of the hamiltonian Ĥ to the wavefunction

itself. Accordingly, the partial wave equations to be integrated read:

ĤψJΩ =
[

T̂R,r,Θ,J,Ω + V (R, r,Θ)
]

ψJΩ + CJ
Ω,Ω±1ψ

JΩ±1 (2.16)

being

T̂R,r,Θ,J,Ω = T̂R + T̂r + T̂Θ +
J(J + 1)− 2Ω2

2µRR2

T̂R = −
1

2µR

∂2

∂R2

T̂r = −
1

2µr

∂2

∂r2

T̂Θ = −
(

1

2µRR2
+

1

2µrr2

)(

1

sin Θ

∂

∂Θ
sinΘ

∂

∂Θ
−

Ω2

sin2 Θ

)

CJ
Ω,Ω±1 =

[J(J + 1)− Ω(Ω ± 1)]1/2 [j(j + 1)− Ω(Ω ± 1)]1/2

R2

where T̂R and T̂r are radial kinetic energy terms, T̂Θ is the angular kinetic energy term, (J(J +1)−

2Ω2)/2µRR2 is the centrifugal term, V (R, r,Θ) is the potential energy term and the last two terms
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correspond to the coupling between wavepackets having different values of Ω, i.e., the non-diagonal

terms of the Coriolis coupling.

In this work, two methods are used to evaluate the hamiltonian. They are the fast Fourier

transform method, to evaluate the radial terms, and the discrete variable representation method to

evaluate the angular ones.

2.3.1 Methods for the hamiltonian evaluation

In this work, two methods are used to evaluate the hamiltonian. They are the fast Fourier

transform method to evaluate the radial terms and the discrete variable representation method to

evaluate the angular ones. The introduction of the fast Fourier transform (FFT) method by Feit et

al. [40, 41] and Kosloff [42] for computing the action of the kinetic energy part of the hamiltonian

on the wavepacket function was a significant development in TD quantum calculations. To compute

the second derivative of the wavefunction the FFT method performs a Fourier transform from the

coordinate space to the momentum space, multiplies it by −k2 (where k is the wavenumber), and

transforms it back to the coordinate space by an inverse Fourier transform. These steps can be

formulated as:

ψ(k) =
1√
2π

∫ ∞

−∞
ψ(x) exp(−ikx)dx = FFT [ψ(x)] (2.17)

ψ(x) =
1√
2π

∫ ∞

−∞
ψ(k) exp(−ikx)dx = FFT−1 [ψ(k)]

dψ(x)

dx
=

1√
2π

∫ ∞

−∞
ψ(k)(ik) exp(−ikx)dk = FFT−1 [(ik)ψ(k)]

d2ψ(x)

dx2
=

1√
2π

∫ ∞

−∞
ψ(k)(ik)2 exp(−ikx)dk = FFT−1

[

−k2ψ(k)
]

where x ≡ R, r. Since the kinetic energy operator is local in the momentum space, its action on the

wavefunction is evaluated very accurately, just as in the case of the potential energy operator in the

coordinate space. The method requires that the wavefunction satisfies periodic boundary conditions

and is exact for band-limited functions. If the wavefunction is not band-limited and/or boundary

the conditions are not satisfied, the wavefunction would wrap around the opposite side introducing

errors in the calculation (aliasing effects).

It is worthwhile to add that, in a discrete representation, operators corresponding to physical

observables in the original Hilbert space are mapped onto a discrete Hilbert space. Thus operators in
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the discrete Hilbert space should obey all quantum mechanical commutation relations observed by

corresponding physical observables in the original Hilbert space. In this case a one-to-one mapping

of the operators to the discrete space is achieved. It has been shown that this is indeed the case with

the Fourier discretization for a band limited function with a finite support that is, of finite extent

in configuration as well as in momentum space [42]. This reconfirms the versatility of the Fourier

transform method over that of other methods. In cases where the wavefunction is not periodic or

band-limited, one has to employ a semilocal approximation for the kinetic energy operator (as is

the case of the finite difference scheme or the discrete variable representation described later in this

section).

It is worth comparing the kinetic energy discrete spectrum in the Fourier discretization and in the

finite difference (FD) approximation. For the wavefunction given in eq. 2.17, the former gives the

exact kinetic energy spectrum [42]:

TFFT(k) =
!2

2m
k2 (2.18)

while the latter yields [43]:

TFD(k) =
!2

2m

[

2 sin(k∆x/2)

∆x

]2

(2.19)

Upon inspection it becomes clear that, if the mesh size ∆x is chosen to be very small, the kinetic en-

ergy discrete spectrum in the FD scheme approaches the exact one given by the FFT discretization.

Thus a for comparable accuracy one should employ a finer mesh in the FD scheme than for the FFT

discretization. An alternative way of constructing discrete representations is the discrete variable

representation (DVR) method. The DVR method was originally introduced in Molecular Reaction

Dynamics by Light and coworkers for solving the time-dependent Schrödinger equation [44–46].

This method is a very general and powerful method and has extensively been used in the evaluation

of the hamiltonian operation on the wavefunction in time-dependent calculations [47–51]. It is ap-

plied to one-dimensional problems or direct product basis functions in multidimensional problems.

The DVR method is a localized (in coordinate space) discrete representation. For any given

finite basis set φn(x) (n = 1, 2, 3, ..., N ), one can define a unique DVR by diagonalizing the matrix:

xmn = ⟨φm|x̂|φn⟩ (2.20)

which generates n eigenvalues xn and eigenfunctions:

|Xn⟩ =
∑

m

|φm⟩Cmn (2.21)
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such that:

x̂|Xn⟩ = xn|Xn⟩ (2.22)

This equation implies that, in this N -dimensional vector space, the coordinate operator x̂ is approx-

imated by:

x̂ =
N
∑

m=1

N
∑

n=1

|φm⟩xmn⟨φn| =
N
∑

n=1

|Xn⟩xn⟨Xn| (2.23)

With this prescription for the operator x̂, |Xn⟩ is also an eigenstate of any operator function F (x̂),

i.e.:

F (x̂)|Xn⟩ = F (xn)|Xn⟩ (2.24)

Since the DVR basis set |Xn⟩ is related to the finite basis set φn(x) through a unitary or orthogonal

transformation of the eq. 2.21, it is an equivalent basis set to φn(x) in this N -dimensional vector

space. The DVR basis functions are highly localized in coordinate space, i.e. ⟨x|Xn⟩ is highly

peaked near x = xn. Due to this particular local property of the DVR basis, the matrix element of

any local operator in the DVR basis is approximately diagonal. For example, the matrix element of

the potential energy operator in the DVR basis is approximated by:

⟨Xm|V (x̂)|Xn⟩ = δmnV (xn) (2.25)

This result applies to any local operator which is a function of coordinates only, and should be un-

derstood in the sense that the coordinate operator is approximated by eq. 2.23 in the N -dimensional

vector space. As the dimension of the vector space increases, the approximation in eq. 2.25 becomes

increasingly better. Since the most potential energy operators are local in functions of coordinates,

they are diagonal in the DVR representation, and the integration over the coordinates to construct

the potential matrix can be eliminated.

If the basis functions used to define DVR are polynomials Pn(x) that are orthogonal with the

weighting function W (x):

⟨Pm|Pn⟩ =
∫ b

a
W (x)Pm(x)Pn(x)dx = δmn (2.26)

then one can use a Gaussian quadrature to evaluate the integral:

⟨Pm|Pn⟩ =
N
∑

k=1

Pm(xk)Pn(xk)wk = δmn (2.27)

where xk and wk are Gaussian nodes and weights, respectively. The property of Gaussian quadra-

ture guarantees that eq. 2.27 is exact for m,n = 0, 1, 2, ..., N −1. Thus for orthogonal polynomials,
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the associated DVR points are just Gaussian nodes, and the orthogonal transformation between the

DVR and the polynomial basis is simply given by the relation:

⟨Pn|Xk⟩ =
√

wk Pn(xk) (2.28)

If one evaluates the matrix element of a local operator such a potential V (x) in the basis of or-

thonormal polynomials by Gaussian quadrature, one has:

⟨Pm|V |Pn⟩ =
N
∑

k=1

Pm(xk)V (xk)Pn(xk)wk (2.29)

=
N
∑

k=1

⟨Pm|Xk⟩V (xk)⟨Xk|Pn⟩

which is equivalent to inserting a complete DVR set
∑

k |Xk⟩⟨Xk| directly into the integral and

using DVR result:

V |Xk⟩ = V (xk)|Xk⟩ (2.30)

This means that one can think of the Gaussian quadrature as a special case of DVR when the associ-

ated basis functions are orthogonal polynomials. Thus evaluating the potential matrix elements of a

local operator, such as the potential operator, in an orthogonal polynomial basis by the DVR method

is equivalent to using Gaussian quadrature to evaluate the matrix element. This directly relates the

approximation used in the DVR evaluation of the potential matrix to that of numerical quadrature.

Computationally, the DVR method scales as N2 compared to the N log N scaling of the FFT

method. The advantage of the DVR approach is that, unlike the FFT one, the wavefunction needs

not to be transformed to the momentum space forth and back every time step, avoiding, so far, a

considerable overhead. Furthermore, it is possible to keep at a minimum the number of the basis

functions required for the expansion if an appropriate basis is chosen according to the nature of the

potential.

2.3.2 Evaluation of the effect of the hamiltonian on the wavepacket

As already apparent in eq. 2.16, the evaluation of Ĥψ can be nicely separated in two parts: the

evaluation of T̂ψJΩ and of V ψJΩ where, as already mentioned, T̂ is the kinetic energy operator and

V the potential energy one. The evaluation of the potential term is a relatively simple task. In fact,

this is a local operation being the potential energy operator diagonal if one uses the representation

of Jacobi coordinates. Therefore, the V ψJΩ term is obtained by multiplying the wavepacket at each

VIRT&L-COMM.9.2016.3

ISSN: 2279-8773



36 Section 2

grid point by V (Ri, rj ,Θk), where Ri, rj and Θk represent respectively the ith point of the R grid,

the jth point in the r grid and the kth point in the Θ grid. However, the evaluation of the action of

the kinetic operator on the wavepacket is a more complicated issue, since T̂ψJΩ term is not local in

the representation adopted.

The effect of applying the R term of the kinetic operator, T̂R, is expressed as:

T̂Rψ
JΩ(R, r,Θ, t) = −

1

2µR

∂2

∂R2
ψJΩ(R, r,Θ, t) (2.31)

This operation can be performed in three steps. The first one is a first Fourier transform:

ψJΩ(kR, r,Θ, t) =
1√
2π

∫ ∞

−∞
exp(−ikR)ψJΩ(R, r,Θ, t)dR

= FFT
[

ψJΩ(R, r,Θ, t)
]

(2.32)

to obtain the momentum representation of the wavepacket. The second step is the multiplication of

the previous result by k2/2µR (which is the representation of the kinetic operator in the momentum

space) and is a local operation at each grid point of the momentum space. The third step consists in

an inverse Fourier transform. Accordingly, the action of T̂R on the wavepacket is accomplished by:

T̂Rψ
JΩ(R, r,Θ, t) = FFT−1

[

k2

2µR
FFT

[

ψJΩ(R, r,Θ, t)
]

]

(2.33)

A similar procedure can be adopted for the r term of the kinetic operator, T̂r.

As for the angular term of the kinetic operator, T̂Θ, one can realize that:
{

−
1

sinΘ

∂

∂Θ
sin Θ

∂

∂Θ

}

Pj(cos Θ) = j(j + 1)Pj(cos Θ) (2.34)

and then its grid representation is:

Tli =
Nθ
∑

j=0

Ulj j(j + 1) UT
ij (2.35)

where U is the matrix that transforms the Legendre polynomial basis set to the grid representation:

Uij = Pj(cos Θi)
√

wi (2.36)

where wi are the Gauss-Legendre weights wi = sin Θi. Note that this equation is the application of

the general DVR eq. 2.28 to the angular part of the kinetic operator.

Therefore, the action of the angular part of the kinetic energy operator at a given point l is

formulated as:

{T̂Θψ}l =

(

1

2µRR2
+

1

2µrr2

) Nθ
∑

i

Tliψi (2.37)
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2.3.3 Wavepacket propagation and analysis

The evolution in time of the wavepacket requires that the evolution operator exp(−iĤτ/!) is

applied onto the wavefunction (eq. 2.10). A Taylor expansion for the evolution operator reads:

exp

(

−iĤτ

!

)

ψ(R, r, t) = (2.38)
⎧

⎨

⎩

1−

(

iĤτ

!

)

−
1

2!

(

Ĥτ

!

)2

+
i

3!

(

Ĥτ

!

)3

+ ...

⎫

⎬

⎭

ψ(R, r, t)

Therefore, the propagation method requires the knowledge of the result of applying the hamiltonian

operator onto the wavefunction to solve the TD Schrödinger equation. The coordinates used will

strongly affect the efficiency and precision of the propagation. Several methods can be employed

for the propagation of them. The most popular are the split operator [40, 52], the Lanczos recursive

[53–55] and the Chebyshev [56, 57]. In the work reported here, the Chebyshev iteration has been

used. In the followings we describe it in some detail.

The Chebyshev expansion for the evolution operator reads:

exp

(

−iĤτ

!

)

ψ(R, r, t) = exp

(

−i
(

∆E
2 + Vmin

)

τ

!

)

(2.39)

N
∑

n=0

(2− δn0)Jn

(

∆E τ

2!

)

Pn(−iĤs)

where Pn are the Chebyshev polynomials of complex argument (the first three Chebyshev polyno-

mials are: P0(−ix) = 1, P1(−ix) = −2ix and P2(−ix) = −4x2 + 1). They obey the recursion

formula Pn+1 = −2iĤsPn + Pn−1, where Ĥs is a normalized hamiltonian whose eigenvalues are

confined into the interval −1 and +1. This normalization is performed by finding the range of the

hamiltonian operator (∆E = Emax − Emin):

Ĥs =
Ĥ − Î

(

∆E
2 + Vmin

)

∆E
2

(2.40)

Since it is essential to limit the range of the hamiltonian a potential cut off is applied to make

V = Vmax when V > Vmax.

In eq. 2.39, Jn are Bessel functions. They play a very important role in the convergence of

the expansion. For n values greater than the argument ∆E τ/2!, Jn decreases exponentially in

value. One can therefore predict that the number of terms needed in the expansion is approximately
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N ≈ ∆E τ/2!. This means that the number of terms required to expand the time evolution operator

is proportional to the range of the hamiltonian operator. Or, equivalently, N is the number of

operations that the hamiltonian operator must perform in order to propagate the wavepacket forward

by τ .

The wavepacket is subsequently propagated using the modified TD Schrödinger equation sug-

gested by Balint-Kurti and Gray [24]. According to this scheme, the hamiltonian Ĥ in the ordinary

TD Schrödinger equation is substituted by an analytic function of itself, denoted here by f(Ĥ).

If this analytic function is chosen appropriately (for instance f(Ĥ) = − arccos Ĥs), the subse-

quent propagation of the wavepacket by the Chebyshev scheme is significantly simplified. Thus,

the propagation equation used is :

f(Ĥ)ψ = i!
∂ψ

∂t

To carry out the propagation, the wavepacket is located on a regularly spaced grid on R and r

and on a grid of Gauss-Legendre quadrature points in the Jacobi angle Θ. The initial wavepacket is

transformed into the Jacobi product coordinates R′, r′ and Θ′ of the channel of interest and the entire

propagation is carried out in these coordinates. At the initial time (t=0) the wavepacket is placed far

in the reactant channel and it is mapped into a product coordinate grid. The product coordinate grid

has to be large enough to contain the initial wavepacket and to properly describe the wave packet

during its evolution in time including the region where the analysis line is drawn and the interaction

region. At the same time, the grid has to be fine enough to accurately describe the structure of

the wavefunction. Figure 2.4 shows a typical grid domain in the reactant R and r coordinates. As

time progresses, the wavepacket moves into the interaction region. At the grid edges, an absorption

region is introduced to prevent the wavepacket amplitude from reaching the edge of the grid and

causing the already mentioned problem of aliasing in Fourier transform theory [58, 59]. In this

absorption region the wavepacket is multiplied by a damping function of the form:

φ(R) = exp

(

−
(R−Ra)2

2 b2

)

(2.41)

where b is a measure of the effective length of the potential and Ra is the value of R beyond which

the value of the function differs from unity. The wavepacket is then propagated in time until it has

mainly been absorbed near the edge of the grid. The wavepacket is analysed at every time step

along an analysis line in the asymptotic region of the product channel [24, 60] so as to accumulate

the data needed for the computation of the detailed state to state S matrix elements SJp
vjΩ,v′j′Ω′(Etr)

at the various values of the collision energy, Etr, contained within the wavepacket.
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Figure 2.4: Schematic representation of the grid domain in the reactant R ≡ RA,BC and r ≡ rBC coor-
dinates. The starting point R = R0 of the propagation is placed in reactant channel and the analysis line
R′ = Rinf is drawn in the product channel.
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Before the propagation starts, suitable representations of the hamiltonian to be used are calcu-

lated and stored in memory. The values of the potential energy surface are calculated for all points

of the grid used and are stored in the diagonal positions of an array. Also the diagonal elements of

the hamiltonian which are local in the coordinate representation (and therefore can be regarded as

parts of the potential energy) are calculated and stored in the diagonal positions of the same array.

Then, once the propagation starts, the corresponding off-diagonal terms, both local and non-local

in coordinate space are calculated and stored in the appropriate off-diagonal positions of the same

array.

At each stage of the propagation, the overlap of the wavepacket with each of the open product

channels is calculated and stored. Since the product wavefunction are effectively localized in the

product region, this overlap is zero at early times and attains high values only for relative narrow

time window for a direct reaction (as N + N2 is on the PES considered). At the end of the prop-

agation, the S matrix elements for all open product channels and for all energies of interest are

computed using the overlap values calculated throughout the propagation by a half-Fourier trans-

form, taking into account the fact that f(Ĥ) rather than Ĥ was used to propagate the wavepacket.

There are mainly two well known methods to analyse the wavepacket: the asymptotic analy-

sis [24, 26, 61] and the flux method [62]. In the asymptotic analysis method (the one used in this

Thesis to study the N + N2 reaction) the wavepacket is analysed along an asymptotic cut (analysis

line) of at the product channel at each time step. The analysis is performed by projecting the cor-

responding cut taken through the wavepacket at the analysis line onto the product eigenfunctions,

φAB
v′j′(r

′). This yields a time dependent coefficient for each possible final quantum states of the

system through the following integration:

CJp
vjΩ,v′j′Ω′(t) =

∫

r′
dr′
∫

Θ
sin Θ′ PΩ′

j′ (Θ′) φBC
v′j′(r

′) ψJΩp(R′ = R′
∞, r′,Θ′) dΘ′ (2.42)

The C coefficients are then Fourier transformed in order to obtain the elements of the energy-

dependent collision matrix A:

AJp
vjΩ,v′j′Ω′(E) =

1

2π

∫ ∞

t=0
exp (iEt/!) CJp

vjΩ,v′j′Ω′(t) dt (2.43)

from which the S matrix elements are calculated using the expression:

SJp
vjΩ,v′j′Ω′(E) =

(

kvjkv′j′

µµ′

)1/2 !AJp
vjΩ,v′j′Ω′(E)

g(−kvj)
exp

(

−ikv′j′R
′
∞

)

(2.44)

where kvj and kv′j′ are the wavenumber of the reactant and product rovibrational states, µ and

µ′ is the reduced mass of the reactants and products, and g(−kvj) is the amplitude of the initial

wavepacket with momentum −!kvj .
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2.4 The time independent (TI) method

Time independent techniques are conceptually more complex than time dependent ones since

they require two computational steps: the calculation of a lower dimensionality basis set and the

propagation along a properly defined reaction coordinate of the scattering coupled differential equa-

tions. This is due to the fact that by eliminating time from the equations one needs to adopt a

new continuity variable by working out an appropriate mathematical variable (reaction coordinate)

smoothly connecting reactant and product asymptotic regions. In my thesis work I focused the

attention on the popular choice of adopting a set of orthogonal coordinates undergoing a smooth

transformation from a reactant to a product biased arrangement by performing a gradual kinematic

rotation from the reactants to the products geometry, embodying the description of the proceeding

of the reaction in a single variable (reaction coordinate). The remaining coordinates, orthogonal to

this one, support the description of the bound motion of the system.

2.4.1 Hyperspherical coordinates

A conceptually simple example of this type of coordinates are the natural coordinates (ρη, ρσ)

[63], shown in figure 2.5 for a collinear reaction (Θ = 180◦). The reaction coordinate ρη can be

chosen to coincide either with the minimum energy path (Minimum Energy Path, MEP) connecting

the two asymptotes or with the maximum gradient path (Steepest Descent or SD) connecting the

saddlepoint to the asymptotes. These two curves, though having a complicated exact formulation,

are very useful for qualitative discussions of the dynamics of chemical systems. To such popularity

of the natural coordinates for qualitative discussions about dynamical effects, does not correspond,

however, an adequate formal development because of the problems arising in the formulation of the

scattering equations for reactions especially when, as is the case of the homonuclear reactions such

as H + H2 and N + N2, branching among different product channels may occur.

A coordinate which is able to describe with continuity the evolution of the geometry of the

system between two different asymptotic arrangements (passing through a global aggregate) is the

hyperradius ρ of the hyperspherical coordinates [64–71, 71–73]. It is defined as

ρ2 = R2
λ + r2

λ = R2
λ+1 + r2

λ+1 = R2
λ+2 + r2

λ+2 (2.45)

and so it is independent of the reference arrangement λ. The other two hyperspherical coordinates
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products

reagents

ρ
η

ρ
σ

rBC

RBC

Figure 2.5: Sketch of the natural coordinates for the reaction H + H2.

are angles which can be defined wither in a symmetric or in an asymmetric way [66–71,71–74]. For

the asymmetric set of hyperspherical coordinates one takes the plane defined by a fixed value of the

collision angle Θλ, and the angle ψλ defined as

ψλ = arctan
Rλ

rλ
(2.46)

(called χλ in the formalism of ref. [64]) and coincides with Smith’s kinematic angle Ψλ [65] for less

than a different choice of the origin. In order to clarify the relationships relating the hyperspherical

coordinates to the Jacobi and physical coordinates, we can use the internal cartesian coordinates ξλ,

η and ζλ. The relationships linking the cartesian internal coordinates to the Jacobi coordinates are:

ξλ =
2

ρ
(rλ ·Rλ) =

2

ρ
|rλ| |Rλ| cos Θλ,

η =
2

ρ
(rλ ×Rλ) =

2

ρ
|rλ| |Rλ| sin Θλ,

ζλ =
1

ρ
(|r2

λ|− |R2
λ|), (2.47)

where · and × indicate respectively the scalar and vectorial products (the modulus of the vectorial

product equals two times the area of the triangle defined by the three particles (area = ηρ/4)). If we
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introduce the polar representation of the Jacobi vectors:

rλ = ρ cosψλ,

Rλ = ρ sinψλ, (2.48)

it can be immediately seen that the expression of the internal coordinates ξλ, η and ζλ in the non

symmetric hyperspherical parametrization, (ρ, ψλ and Θλ), exhibits a double interval for the an-

gle ψλ. Moreover, the relationship linking the internal angles 2ψλ and Θλ of the non symmetric

parametrization to the internal cartesian coordinates allows also to link the angles of the symmetric

parametrization 2Θ and 2Ψλ (Φλ in [64]) as follows

ξλ = ρ sin 2ψλ cos Θλ = ρ cos 2Θ sin 2Ψλ,

η = ρ sin 2ψλ sinΘλ = ρ sin 2Θ,

ζλ = ρ cos 2ψλ = ρ cos 2Θ cos 2Ψλ. (2.49)

These two different choices of the internal angles represent the two main alternative hyperspherical

parametrizations. All other parametrizations can be obtained from these two by the introduction of

appropriate scaling factors. The relationships linking the three internal cartesian coordinates to the

set of coordinates of two internuclear distances and the angle that they form are:

ξλ =
2

ρ
(rλ+2,λ+1 rλ,λ+1 cos Φλ −

mλ+2

mλ+2 + mλ+1
r2
λ+2,λ+1),

η =
2

ρ
(rλ+2,λ+1 rλ,λ+1 cos Φλ),

ζλ =
d2

ρ

(

[d−4 − (
mλ+2

mλ+1 + mλ+2
)2] r2

λ+2,λ+1 − r2
λ,λ+1 + 2

mλ+2

mλ+1 + mλ+2

× rλ+2,λ+1 rλ,λ+1 cos Φλ) (2.50)

(Φλ is the δ of ref. [64]). The bond angle is related to the distances by the relationship

cos Φλ =
r2
λ+2,λ+1 + r2

λ,λ+1 − r2
λ,λ+2

2 rλ+2,λ+1 rλ,λ+1
, (2.51)

so that cartesian internal coordinates can be related to physical distances and angles. The expression

that relates the hyperradius to the distances and to the internal cartesian coordinate is

ρ2 = µ
3
∑

λ=1

r2
λ+1,λ+2

Mλ
= (ξ2λ + η2 + ζ2

λ). (2.52)
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2.4.2 Delves hyperspherical coordinates

In reactive scattering the asymmetric hyperspherical coordinates were first introduced as Delves

coordinates [70], which make use of the angle θDλ
defined as

θDλ
= arctan(rλ/Rλ), (2.53)

and of the angle Θλ. Delves hyperspherical coordinates, though referring to one definite atom-

diatom geometry, are not particularly suited to describe the related asymptotic situation, as true for

all the hypershperical coordinate systems. Hyperspherical coordinates, in fact, due to the use of an

angle for the final diatom description (rather than the related arc which would tend instead to the

internuclear distance), do not have a decoupled formulation at large values of ρ (see also ref [75].

Therefore, at large values of ρ, it is preferable to perform a transformation into Jacobi coordinates.

The volume element and coordinate ranges of Jacobi and Delves coordinates are, for an arbitrary

function F [74]
∫

F dRλ drλ =

∫ ∞

0
R2

λ dRλ

∫ ∞

0
r2
λ drλ

∫

dR̂λ

∫

F dr̂λ (2.54)

and
∫

F dRλ drλ =
1

4

∫ ∞

0
ρ5 dρ

∫ π/2

0
sin2 (2θDλ

) dθDλ

∫

dR̂λ

∫

F dr̂λ. (2.55)

Then, in the reference SF system, the following relationship can be used:

dR̂λdr̂λ = sinϑRλ
dϑRλ

dϕRλ
sinϑrλ

dϑrλ
dϕrλ

,

and in the BFλ system

dR̂λdr̂λ = dαλ sinβλ dβλ dγλ sin Θλ dΘλ,

so that both angular integrations cover the usual (4π)2 sr. The surface of the hypersphere is the five-

dimensional surface defined by the angles θDλ
,Θλ,α,β and γ, though sometimes, improperly, the

hypersphere is meant to be only the two-dimensional surface of the internal coordinate half-sphere

defined by θDλ
and χi.

While ρ gives an idea of the overall size of the ABC system (and thus of its moving towards

fragments), θDλ
and Θλ describe the shape of the triangle formed by the three particles. For these

reasons, it is often very helpful to view things on the surface of the internal sphere as functions of

θDλ
and Θλ at ρ fixed. Since θDλ

and Θλ cover the upper half of the surface of a sphere, we can
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make plots using the projection most commonly used in making maps of the Earth as viewed from

the North pole, and that is the stereographic projection, in which the X and the Y on the plot are

defined by

X = tan(
1

2
θDλ

) cos Θλ, Y = tan(
1

2
θDλ

) sin Θλ. (2.56)

To give an example of the use of these coordinates to draw isoenergetic contours of a potential

energy surface, we plot in Fig 2.6 the contour maps of the LAGROBO4 PES for the system N + N2

(for a more detailed description see later) at the hyperradius of the transition state (ρ = 4.39 bohr).

2.4.3 Hyperspherical adiabatic coordinates

To get a set of coordinates more adequate for the description of the geometries of the strong

interaction region, before building the hyperspherical representation the Jacobi coordinates can be

transformed into a set of coordinates which adiabatically transform from a geometry to another by

continuously redirecting Rλ along the principal axis of inertia (AP, Adiabatically adjusting Principal

axis of inertia [74]). In fact, if we consider the arbitrary angle χλ of the kinematic rotation (called

kinematic angle) that transforms Rλ and rλ in the vectors Q and q:
(

Q

q

)

= T (χλ)

(

Rλ

rλ

)

, (2.57)

we can choose the value of χλ which maximizes Q and minimizes q. Such angle is defined by the

relationships:

sin(2χλ) =
2Rλ · rλ

[

(R2
λ − r2

λ)2 + (2Rλ · rλ)2
]1/2

, (2.58)

cos(2χλ) =
(R2

λ − r2
λ)

[

(R2
λ − r2

λ)2 + (2Rλ · rλ)2
]1/2

(2.59)

The formulation of Q and q in terms of the Jacobian coordinates is therefore:

Q =

(

R2
λ + r2

λ

2
+

[

(R2
λ − r2

λ)2 + (2Rλ · rλ)2
]1/2

2

)1/2

, (2.60)

q =

(

R2
λ + r2

λ

2
−
[

(R2
λ − r2

λ)2 + (2Rλ · rλ)2
]1/2

2

)1/2

. (2.61)

Even if equations 2.60 and 2.61 are labeled by λ, Q and q do not depend on a specific arrangement.

In fact, the angles χλ for different arrangements differ only for a determined phase.
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LAGROBO4 PES (eV), ρ=4.39 bohr
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Figure 2.6: Stereographic projection of isoenergetic contours of the LAGROBO4 (for a definition

of the LAGROBO potential see later) PES for the system N + N2 as a function of θDλ
and Θλ on

the surface of the sphere with the transition state hyperradius ρ = 4.39 bohr. The distance from the

center of the plot (North pole) is a measure of θDλ, and the azimuthal angle Θλ is measured from

the positive X axis.
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The choice of this particular angle lets the vector Q tend to the Jacobian vector Rλ when the lat-

ter gets large (that is when the atom λ lies far away from the diatom). This behaviour is important,

given the specificity of the Jacobian coordinates to identify a given arrangement. Unfortunately,

however, q does not tend to rλ at the same time. As a consequence, the coordinate system (Q, q) is

not suitable to describe the asymptotic zone. As already mentioned, the study of the collisions re-

quires sometimes a rotation of the cartesian axes in order to preserve certain properties (for instance,

to have an axis that heads to the center of mass of the diatom). Such rotations are physical rotations.

Let ℜ(2← 1) be the rotation that carries some axes set 1 into axes set 2. Then the representation of

ℜ(2← 1) which acts on our column vectors is the 6× 6 matrix

R (2← 1) =

(

R 0

0 R

)

, (2.62)

where 0 is the 3 × 3 null matrix and R is the matrix of Euler angles. Then, the column vectors of

coordinates relative to the two sets of axes are related by
(

R2
λ

r2
λ

)

= R (2← 1)

(

R1
λ

r1
λ

)

. (2.63)

Equation 2.63 is used to define the rotation that carries a system 1 fixed in space (SF) into system

2 integral with the body (BF). In this case, if we choose the Euler angle γλ so that the coordinate

rλ has a zero ϕ angle in the BFλ system - that is rλ lies in the BFλ XZ plane with a non negative

X component - by choosing the BFλ system so that Rλ lies along the axis Z , each BF reference

system for λ = A, B and C has a common Y axis. Because of this, the transformation between the

two systems is obtained by simply rotating about the common Y axis.

The procedure followed to maximize Q - and minimize q - is equivalent to make the reference

BF system an instantaneous principal axes system and to make these two coordinates coincide with

the principal axes of the tensor of inertia itself.

There is a line for which Rλ = rλ and Rλ · rλ = 0 (and thereby Q=q). This makes that the

denominator and the numerator of the equations 2.58 and 2.59 become null, making χλ undefined.

Out of the AP coordinates one can define the APH coordinates (Adiabatically adjusting Principal

axis of inertia Hyperspherical coordinates [74]). APH coordinates are the symmetric version of the

hyperspherical coordinates often easier to use in the treatment of the strong interaction region. The

expressions that links the APH coordinates to the AP ones are:

ρ2 = Q2 + q2, (2.64)

θ =
π

2
− 2 arctan q/Q,
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where ρ ∈ [0,∞) is the hyperradius and θ ∈ [0,π/2] is one of the two hyperangles. The remaining

hyperangle, χλ ∈ (−π/2,π/2], is such that maximizes Q. The coordinate ranges cover the upper

half of a sphere and can be visualized as polar spherical coordinates of the internal space. The line

undefined in χλ is now the line θ = 0 which, like in polar spherical coordinates, does not cause

any problem. The three APH coordinates can be directly expressed as functions of the Jacobian

coordinates:

sin(2χλ) =
2Rλ · rλ

[

(R2
λ − r2

λ)2 + (2Rλ · rλ)2
]1/2

,

cos(2χλ) =
(R2

λ − r2
λ)

[

(R2
λ − r2

λ)2 + (2Rλ · rλ)2
]1/2

,

tan θ =

[

(R2
λ − r2

λ)2 + (2Rλ · rλ)2
]1/2

2Rλrλ sin Θλ
, (2.65)

and

ρ2 = (R2
λ + r2

λ)1/2, (2.66)

where we note how these two polar coordinates are λ-independent, that is do not depend on a

particular arrangement. The inverse formulae are:

Rλ =
ρ√
2
{1 + sin θ cos[2(χi − χλi)]}1/2, (2.67)

rλ =
ρ√
2
{1− sin θ cos[2(χi − χλi)]}1/2, (2.68)

and

cos Θλ =
sin θ sin[2(χi − χλi)]

{1− sin2 θ cos2[2(χi − χλi)]}1/2
. (2.69)

These equations are useful because we can generate using them (eq. 2.68 in particular) the internu-

clear distances relative to a triple of ρ, θ and χi. The BF axes are fixed on the instantaneous principal

axes of inertia, and they adiabatically adjust to follow any atom which leaves the other two. The

internal coordinates treat all arrangements equivalently, and also switch smoothly between reactant

and product arrangement during the course of the reaction.

2.5 Hamiltonian formulation and boundary conditions

For the generic atom-diatom reaction:

A + BC(v, j) −→ AB(v′, j′) + C
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the stationary scattering Schrödinger equation has the general form [74, 76, 77]:

[HN − E] Ξ(+)
λivijimi

(Rλ, rλ) = 0, (2.70)

where i implies “initial” or “incident” and the quantum numbers λ, v, j, and m label, respectively,

the arrangement channel, vibration, angular momentum, and SF Z component of the angular mo-

mentum of the initial diatomic molecule (sometimes i will be used as a composite quantum number

that includes all of them). The (+) label implies the usual (see eq. 2.74) incident plane wave -

outgoing scattered waves boundary condition.

The nuclear hamiltonian HN has the form given in eq. 2.4 that can be further compacted using

a mass scaled version of the Jacobi vectors Rλ and rλ:

−
!2

2µ
(∇2

Rλ
+∇2

rλ
) + V (Rλ, rλ,Θλ) (2.71)

and hence it is hexadimensional. Recently, its solution directly in the six cartesian projections

has been attempted. Most often, as done in eqs. 3.5 and 3.6 it is found convenient to exploit the

algebra of angular momenta by expressing the hamiltonian in terms of the rotational jλ and orbital

lλ angular momentum operators (or of the total angular momentum J [76] and jλ) and reformulate

the hamiltonian either as

HN = −
!2

2µ

(

1

Rτ

∂2

∂R2
τ
Rτ +

1

rτ

∂2

∂r2
τ
rτ −

l2λ
R2

τ
−

j2λ
r2
τ

)

+ V (Rτ , rτ ,Θλ). (2.72)

or as

HN = −
!2

2µ

(

1

Rτ

∂2

∂R2
τ
Rτ +

1

rτ

∂2

∂r2
τ
rτ

)

+
1

2µ

(

1

R2
τ

+
1

r2
τ

)

j2λ (2.73)

+
1

2µR2
τ

(J2 − J− · j+ − J+ · j− +−2Jzjz) + V (Rτ , rτ ,Θλ).

In equation 2.73, jz is the Z axis component of j, while J± and j± represent the displacement

operators related to J and j.

2.5.1 Asymptotic boundary conditions

The scattering asymptotic boundary condition at R→∞ is:

Ξ(+)
i (Rλ, rλ)

R→∞→
1

rλi

exp(iki ·Rλi
)Xviji(rλi

)Yjimi(r̂λi
)

+
∑

λf vf jfmf

1

Rλf
rλf

f(λfvfjfmf ← λivijimi|ki, kf , R̂λf
)

× Xvf jf
(rλf

)Yjfmf
(r̂λf

) exp(ikf Sλf
). (2.74)
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The X ’s and Y ’s are the vibrational and rotational wavefunctions, respectively, of the three possible

diatomic molecules. Subscript f (which will sometimes be used as a composite index) runs over

all possible final states including f = i (elastic scattering). With the symbol “ˆ” we label a versor

(unitary vector having verse and direction of the original vector). The function f(λfvfjfmf ←

λivijimi|ki, kf , R̂λf
) is defined as scattering amplitude. The terms in the sum with λf ̸= λi

represent reactive scattering, and those with λf = λi include elastic and inelastic scattering. The

wavenumbers kf are given by

kf =

[

2µ

!2
(E − ϵf )

]1/2

, (2.75)

where ϵf = ϵvf jf
are diatomic vibration-rotation energies1.

It should be noted that the incident direction ki in eq. 2.74 has been kept arbitrary for conve-

nience in calculating kinetic theory cross sections, and all coordinates are relative to SF directional

axes. Furthermore, the partial wave expression of Ξ in the total angular momentum representation

is:

Ξ(+)
i (Rλ, rλ) =

2π

k1/2
i

∑

JMli

ili+1C(jiliJ ;mi,M −mi,M)

× Y ∗
li,M−mi

(k̂i)Ψ
JMλivijili , (2.76)

where C is a Clebsch-Gordan coefficient and Ψ is an eigenfunction of the total angular momentum

with eigenvalue J and projection M . We note that we are here using spaceframe (SF) Jacobi coor-

dinates because they are convenient at large distances, but equation 2.76 is valid at all distances. In

these SF Jacobi coordinates, Ψ can be written as

ΨJMλivijili =
∑

λf vf jf lf

1

Rλf
rλf

GJλivijili
λf vf jf lf

(Rλf
)Xvf jf

(rλf
)

× YJM
jf lf (r̂λf

, R̂λf
), (2.77)

where, as usual,

YJM
jf lf (r̂λf

, R̂λf
) =

∑

mf

C(jf lfJ ;mf ,M −mf ,M)Yjf ,mf
(r̂λf

)

× Ylf ,M−mf
(R̂λf

), (2.78)

and the Y ’s are spherical harmonics [77]. The radial function G must be regular everywhere, and,

1We confine our treatment to systems at energies well below the collision-induced dissociation (CID) threshold: to

include CID would require addition of an outgoing term to eq. 2.74 written in hyperspherical coordinates.
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at asymptotic distances, satisfy the usual boundary conditions:

GJλivijili
λf vf jf lf

(Rλf
)

Rλf
→∞
→

1

k1/2
f

{δλf λi
δvf viδjf jiδlf li exp[−i(kf Rλf

−
π

2
lf )]

− SJ(λfvfjf lf | λivijili) exp[−i(kfRλf
−
π

2
lf )]}. (2.79)

2.5.2 The scattering, reactance and transition matrices

In equation 2.79, use is made of SJ(λfvf jf lf | λivijili), the elements of the scattering matrix

SJ . Another matrix relevant to the scattering calculations is the transition TJ matrix. The TJ

matrix is related to SJ by simple relationships and turns out to be useful for a compact formulation

of the differential cross section:

σ
λivijimi,λf vf jf mf

R (ki, kf , k̂i, R̂f ) = (kf/ki) | f(f ← i) |2=

=

∣

∣

∣

∣

∣

∣

2π

ki

∑

JMlilf

ili−lf +1AiAfT J(λfvf jf lf | λivijili)

∣

∣

∣

∣

∣

∣

2

, (2.80)

where

Ai = C(jiliJ ;mi,M −mi,M)Y ∗
li,M−mi

(k̂i),

Af = C(jf lfJ ;mf ,M −mf ,M)Ylf ,M−mf
(R̂λf

),

whose elements are related to those of the SJ matrix by the relationships

T J(λfvfjf lf | λivijili) = δλf λi
δvf viδjf jiδlf li − SJ(λfvfjf lf | λivijili). (2.81)

In theory, boundary conditions can be applied at the asymptote only. In practice, it is desirable to

apply boundary conditions at distances no larger than necessary. At distances (Rλf
) large enough

that the atom-diatom potential of channel λf is negligible but centrifugal potentials are not neg-

ligible, using matrix notation GJ = {GJ
fi} and composite indices for simplicity, one can write

equation 2.79 as

GJ = F −OSJ , (2.82)

where

Ffi = δfik
1/2
f Rfh(2)

lf
(kfRf )

and

Ofi = iδfik
1/2
f Rfh(1)

lf
(kfRf ), (2.83)
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where the h(i)
l are the incoming and outgoing spherical Bessel functions. In addition, it is convenient

to deal with real functions for most of the calculations, i.e., to construct real functions F = FJ

satisfying the same differential equation as the GJ , but satisfying the boundary condition:

FJ = a− bKJ , (2.84)

where KJ is called the “reactance” matrix although it has no special relation to reactive scattering.

For the open (asymptotically allowed) channels, the elements of a and b are simply proportional to

the spherical Riccati-Bessel functions,

afi = δfik
1/2
f Rfjlf (kfRf )

and

bfi = δfik
1/2
f Rfylf (kfRf ). (2.85)

For asymptotically closed channels, we let

kf = iκf , (2.86)

where κf = |kf | and choose

afi = δfiκ
1/2
f Rf i−lf jlf (iκf Rf )

and

bfi = δfiκ
1/2
f Rf ilf +2h(1)

lf
(iκfRf ). (2.87)

The afi are real and closely related to the modified spherical Bessel functions Ilf +1/2 which are

regular at the origin, and the bfi are also real and closely related to the modified spherical Bessel

functions Klf +1/2 which die exponentially at large distances. The boundary conditions 2.79 can be

applied before the dying closed channel functions bfi are negligible and the complete KJ matrix

containing both open and closed channels can thus be generated. However, the calculation of cross

sections only requires the scattering matrix between open channels, and it can be easily shown that

the desired SJ matrix is obtained from the reactance matrix through

SJ = (1 + iKJ)(1− iKJ)−1, (2.88)

where 1 is the unit matrix, and only the open channel - open channel block of KJ is to be included

in the equation.

In actual practice, the present calculations generate the Wigner RJ matrix,

RJ = F(F′)−1, (2.89)
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where the prime implies the derivative with respect to the appropriate Rλf
:

F ′
fi =

∂Ffi

∂Rλf
. (2.90)

On substitution of eq. 2.84 into eq. 2.89, one readily finds that

KJ = [RJb′ − b]−1[RJa′ − a] (2.91)

gives the KJ matrix from the RJ matrix.

F and GJ have the same RJ matrix. They satisfy the same coupled equations and differ only

in their initial wave boundary conditions, so that it can be shown that GJ = FA or

GJ
fi =

∑

n

FfnAni, (2.92)

where the linear combination only mixes initial components. Thus, the RJ matrix is

RJ
G = GJ(GJ ′

)−1 = FA(F′A)−1 = FAA−1(F′)−1 = F(F′)−1 = RJ
F . (2.93)

We note that the coefficient matrix A is unimportant here. What is important is that the same RJ

matrix is obtained from any radial wavefunctions differing only by a rearrangement of their initial

indices. Hence, the useful property of the RJ matrix will hold for all regular solutions of a given

set of coupled equations.

We also note that the functions of eq. 2.77 have a well defined parity p under inversion of the

SF axes. The parity is carried by the Y functions of eq. 2.78 and is well known to be

(−1)p = (−1)ji+li = (−1)jf +lf . (2.94)

Functions of different parities are not coupled together.

2.5.3 BF Jacobi wavefunctions

The just discussed SF Jacobi formulation is conveniently used at large distances where no

exchange is occuring and atom-diatom interactions in the arrangement channels are weak. Yet, at

smaller distances, but still outside the exchange region, it is sometimes convenient to use the body-

frame formalism. As is well known, the problem can be entirely formulated in the BF, but to avoid
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all concerns about phases we simply transform wavefunctions. The spherical harmonics in the Y of

eq. 2.78 can be written as

Ylf ,M−mf
(R̂f ) =

(

2lf + 1

4π

)1/2

D
lf
0,M−mf

(αf ,βf , γf ) (2.95)

and

Yjfmf
(r̂f ) =

∑

Ωf

YjfΩf
(Θf , 0)D

jf

Ωf mf
(αf ,βf , γf ), (2.96)

where Rf means Rλf
, αf means αλf

, etc. Here f can be any possible final state (including f = i),

and λf is the arrangement channel of state f and Ω, as already mentioned in section 2.1.2, is the

component of the total angular momentum J along BF Z axis2. The Euler angles are those of the

BF Jacobi coordinates. The spherical harmonics on the left-hand side of eqs. 2.95 and 2.96 have

angles relative to the SF. The spherical harmonic on the right-hand side of the equations depends on

a BF angle Θλf
(the angle between Rλf

and rλf
). The Wigner D functions here are those consistent

with the 3× 3 rotation matrix of eq. 2.62.

Substituting eqs. 2.95 and 2.96 into eq. 2.78, and using the coupling rule for the D functions

and the orthogonality of the Clebsch-Gordan coefficient, we obtain:

YJM
jf lf (r̂f , R̂f ) =

(

2lf + 1

4π

)1/2
∑

Ωf

C(jf lfJ ;Ωf0Ωf )

×YjfΩf
(Θf , 0)DJ

Ωf M (αf ,βf , γf ). (2.97)

At this point we note that this equation could also be written as

YJM
jf lf (r̂f , R̂f ) =

(

2lf + 1

4π

)1/2
∑

Ωf

C(jf lfJ ;Ωf0Ωf )

×YjfΩf
(Θf , γf )DJ

Ωf M (αf ,βf , 0). (2.98)

We note that eqs. 2.97 and 2.98 are exactly the same function YJM
jf lf

and involve the same coordi-

nates. They simply correspond to different points of view. Equation 2.98 takes two nonzero Euler

angles; then in the BF the variable r̂f has two nonzero angles and its basis functions are ordinary

spherical harmonics. In this view, the γf dependence is part of the internal or BF wavefunction. On

the other hand, eq. 2.97 takes three nonzero Euler angles and leaves the BF r̂f with only one angle,

so that γf is then not part of the internal or BF wavefunction. The two approaches give exactly the

same set of coupled equations to solve, and choice between them is simply a matter of convenience.

2This component is sometimes labelled using Ω [74].
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For the present problem, eq. 2.97 simplifies the relationship between the three different BFλf
co-

ordinate system, and we use it. In writing eq. 2.97 it is often convenient to use normalized basis

functions,

P̂jΩ(Θ) = (2π)1/2YjΩ(Θ, 0) (2.99)

and

D̂J
ΩM (α,β, γ) =

[

(2J + 1)

8π2

]1/2

DJ
ΩM (α,β, γ), (2.100)

for which
∫ π

0
P̂ ∗

j′Ω(Θ) P̂jΩ(Θ) d(cos Θ) = δj′j (2.101)

and
∫ 2π

0

∫ π

0

∫ 2π

0
D̂J ′∗

Ω′M ′(α,β, γ) D̂J
ΩM (α,β, γ) dα d(cos β) dγ = δJ ′JδM ′MδΩ′Ω. (2.102)

P̂jΩ is actually real and, to within a phase due to the sign of Ω, is just a normalized associated

Legendre polynomial. With these functions, eq. 2.97 becomes:

YJM
jf lf (r̂f , R̂f ) =

(

2lf + 1

2J + 1

)1/2
∑

Ωf

C(jf lfJ ;Ωf0Ωf )P̂jf Ωf
(Θf )

×D̂J
ΩfM (αf ,βf , γf ), (2.103)

and eq. 2.77 becomes:

ΨJMλivijili =
∑

λf vf jfΩf

1

Rfrf
GJλivijili

λf vf jfΩf
(Rf )Xvf jf

(rf )

× P̂jfΩf
(Θf )D̂J

Ωf M (αf ,βf , γf ), (2.104)

where

GJλivijili
λf vf jf Ωf

(Rf ) =
∑

lf

(

2lf + 1

2J + 1

)1/2

C(jf lfJ ;Ωf0Ωf )GJλivijili
λf vf jf lf

(Rf ). (2.105)

The properties of the Clebsch-Gordan coefficients allow this transformation to be easily inverted to

give

GJλivijili
λf vf jf lf

(Rf ) =
∑

Ωf

(

2lf + 1

2J + 1

)1/2

C(jf lfJ ;Ωf0Ωf )GJλivijili
λf vf jfΩf

(Rf ). (2.106)

Transformations between SF and BF radial wavefunctions are well known; however, eqs. 2.105 and

2.106 are unusual in that they are half-transforms; both radial functions are labeled by the same

incident SF partial wave li, so that the Gli
lf

are true SF functions but the Gli
Ωf

are mixed functions

with SF initial labels and BF final labels. They are useful here because, to avoid confusion about
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different final BF axes, we intend to apply SF boundary conditions and generate the standard SF

scattering matrix. To do so, we define the orthogonal matrix C by

Cfn = δλf λnδvf vnδjf jn

(

2lf + 1

2J + 1

)1/2

C(jf lfJ ;Ωn0Ωn). (2.107)

Then eqs. 2.105 and 2.106 read, respectively,

GJ
BF = C̃GJ

SF (2.108)

and

GJ
SF = CGJ

BF . (2.109)

Then, one has

RJ
SF = GJ

SF [ (GJ
SF )′]−1 = CGJ

BF [C (GJ
BF )′]−1

= CGJ
BF [ (GJ

BF )′]−1C−1 = CRJ
BF C̃, (2.110)

so that the SF RJ matrix is a simple similarity transformation of the BF RJ matrix, with a known

transformation matrix.

From eq. 2.104 it is clear that GJλivijili
λf vf jfΩf

satisfies the usual BF coupled equations, and from the

initial index it is clear that they have parity (−1)p = (−1)ji+li under space inversion. This can be

shown to imply that GJ
Ωf

and GJ
−Ωf

are simply proportional to one another and to split the coupled

equations into sets of definite parity.

2.6 The integration of TI scattering equations

The actual integration of scattering equations in my thesis work has been carried out using the

ABC program [78]. The Hamiltonian operator in Delves coordinates has the form

HN = −
!2

2µρ5

∂

∂ρ
ρ5 ∂

∂ρ
+

∆2

2µρ2
+ V (ρ, θDλ

,Θλ), (2.111)

where ∆2, given here by

∆2 = −
!2

sin2 2θDλ

∂

∂θDλ

sin2 2θDλ

∂

∂θDλ

+
l2λ

cos2 θDλ

+
j2λ

sin2 θDλ

, (2.112)

is the square of Smith’s grand angular momentum operator [73]. The wavefunction of eq. 2.91 is

expanded as

ΨJMλivijili = 2
∑

λf vf jf lf

ΓJλivijili
λf vf jf lf

(ρ)

ρ5/2

Υvf jf
(θDλf

; ρ)

sin (2θDλf
)

YJM
jf lf (r̂λf

, R̂λf
). (2.113)

VIRT&L-COMM.9.2016.3

ISSN: 2279-8773



Theory and computation for nuclei dynamics: the atom diatom case 57

Here the three possible arrangement channels λf are distinctively included and the angular func-

tions Y are exactly the same as those used in the Jacobi wavefunctions of eqs. 2.77 and 2.78. The

Υ(θDλf
; ρ) are vibrational wavefunctions which depend parametrically upon ρ; the Γ are radial

wavefunctions, and the same hyperradius ρ occurs in all arrangement channels. The 2 out front in

eq. 2.113 is for convenience in working with the volume element of eq. 2.55 when the Υ satisfy
∫ π/2

0
Υ∗

v′f jf
(θDλf

; ρ)Υvf jf
(θDλf

; ρ) dθDλf
= δv′f vf

. (2.114)

In problems where all potentials go to zero at large ρ or only depend on ρ the ΥY become the analyt-

ically known hyperspherical harmonics. However, in all molecular reactive scattering problems of

which we are aware, the potential between the atoms of the diatomic molecule of each λf arrange-

ment confines the Υ to a very localized region of θDλf
space, and the hyperspherical harmonics

would be a very poor basis set to use.

Because the same angular functions are used for the λf channel Delves and Jacobi wavefunc-

tions, the BF Delves axes are the same as the BF Jacobi axes sets, and one can transform to BF

angular functions via eq. 2.103 and get Γli
lf

that are related to the Γli
lf

via the same equations 2.108

and 2.109 that relate Gli
Ωf

and Gli
lf

.

2.6.1 The propagation in Delves coordinates

For systems with long-range potentials, it is computationally faster to project the Delves solu-

tions onto Jacobi solutions - as discussed in detail later - and propagate those solutions on out to

where the boundary conditions can be applied via eqs. 2.91 and 2.88. However, it is conceptually

simpler and often practical to propagate the Delves solutions out to the asymptotic region and apply

the boundary conditions directly in Delves coordinates. To allow that, we now transform the bound-

ary conditions into Delves coordinates. We note that the Υ are obtained at a finite set of ρ values, at

the centers of the propagation sectors. Thus, anywhere on sector ξ, with center at ρξ , the Υ(θ; ρξ)

are independent of ρ, and eq. 2.113 can be written (using composite indices for brevity) as

ΨJMi = 2
∑

n

ΓJ
ni(ρ)

ρ5/2

Υn(θDn ; ρξ)

sin (2θDn)
YJM

n (r̂n, R̂n), (2.115)

where ΓJi
n = ΓJ

ni. By projection, using eqs. 2.114 and 2.55 one has

ΓJ
fi(ρ) =

1

4

∫ π/2

0
sin2(2θDf

) dθDf

∫

[

2ΥfYJM
f

sin (2θDf
)

]∗

(ρ5/2ΨJMi) dr̂fdR̂f , (2.116)
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∂ΓJ
fi(ρ)

∂ρ
=

1

4

∫ π/2

0
sin2(2θDf

) dθDf

∫

[

2ΥfYJM
f

sin (2θDf
)

]∗
∂(ρ5/2ΨJMi)

∂ρ
dr̂fdR̂f . (2.117)

The Γ functions which we propagate are real regular solutions, so that from eq. 2.77 for ΨJMi with

G replaced by F and using eqs. 2.45 and 2.53 we have

ρ5/2ΨJMi =
∑

n

2ρ1/2

sin (2θDn)
F J

ni(Rn)Xn(rn)YJM
n (r̂n, R̂n). (2.118)

With ρ outside the exchange region there is no overlap of functions with different λn, and the Delves

and Jacobi Y’s are the same functions, so that eqs. 2.116 and 2.117 become

ΓJ
fi(ρ) =

∑

n

δλf λnδjf jnδlf lnρ
1/2
∫ π/2

0
Υ∗

f (θDf
; ρξ)F J

ni(Rf )Xn(rf ) dθDf
, (2.119)

∂ΓJ
fi(ρ)

∂ρ
=

1

2ρ
ΓJ

fi(ρ) +
∑

n

δλf λnδjf jnδlf lnρ
1/2
∫ π/2

0
Υ∗

f
∂ [F J

ni(Rf )Xn(rf )]

∂ρ
dθDf

. (2.120)

Now, by the chain rule,

∂ FX
∂ρ

=

(

cos θDf

∂

∂Rf
+ sin θDf

∂

∂rf

)

FX = cos θDf
X
∂F

∂Rf
+ sin θDf

F
∂X
∂rf

. (2.121)

Using this and eq. 2.84, we can write

ΓJ = A− BKJ (2.122)

and
∂ΓJ

∂ρ
= E −FKJ , (2.123)

where

Afi = δλf λi
δjf jiδlf liρ

1/2
∫ π/2

0
Υ∗

f (θDf
; ρξ) aii(Rf )Xi(rf ) dθDf

, (2.124)

Bfi = δλf λi
δjf jiδlf li ρ

1/2
∫ π/2

0
Υ∗

f (θDf
; ρξ) bii(Rf )Xi(rf ) dθDf

, (2.125)

E =
1

2ρ
A + C, (2.126)

F =
1

2ρ
B + D, (2.127)

Cfi = δλf λi
δjf jiδlf li ρ

1/2
∫ π/2

0
Υ∗

f

[

cos θDf
Xi

∂aii

∂Rf
+ sin θDf

aii
∂Xi

∂rf

]

dθDf
, (2.128)

Dfi = δλf λi
δjf jiδlf li ρ

1/2
∫ π/2

0
Υ∗

f

[

cos θDf
Xi

∂bii

∂Rf
+ sin θDf

bii
∂Xi

∂rf

]

dθDf
. (2.129)
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Once we complete the definition of the Υ’s, these integrals all consist of known functions and

can be performed by quadrature. It is also convenient in these formulae to now set ρ equal to ρξ .

Then, from eq. 2.123 the reactance matrix is

KJ = (RΓF − B)−1(RΓE −A), (2.130)

where RΓ = ΓJ(∂ΓJ/∂ρ)−1 is the Wigner R matrix in the Delves coordinates. Thus, the KJ -

and hence SJ - matrices can be obtained directly from the Delves wavefunctions. We note that,

because of eq. 2.93, Γ need not satisfy any particular incoming conditions but can be any set of

regular solutions of the Delves equations.

2.6.2 Delves to Jacobi projection

For systems with long-range potentials, it is often desirable to project from channel Delves

functions onto Jacobi solutions and propagate them until the potentials are negligible. To do this

projection, we note that eq. 2.77, with GJ replaced by the real functions, F, implies that

Ffi =

∫

drf

∫

Xf (rf )YJM∗
f (r̂f , R̂f ) rf Rf ΨJMidr̂f R̂f (2.131)

and
∂Ffi

∂Rf
=

∫

drf

∫

Xf (rf )YJM∗
f (r̂f , R̂f )

∂ (rfRfΨJMi)

∂Rf
dr̂f R̂f . (2.132)

Substituting eq. 2.113 into these equations, using sector adiabatic Υ functions, using

rfRf =
ρ2 sin 2θDf

2
(2.133)

and evaluating the angular integrals, we obtain

Ffi(Rf ) =
∑

n

∫ ∞

0
ρ−1/2 Xf (rf )Γni(ρ)Υn(θDf

; ρξ) δλf λnδjf jnδlf ln drf (2.134)

and

∂Ffi

∂Rf
=
∑

n

∫ ∞

0
Xf (rf )

∂

∂Rf
[ρ−1/2 Γni(ρ)Υn(θDf

; ρξ)] δλf λnδjf jnδlf ln drf . (2.135)

Thus, all terms in the sums collapse except those over vibrational quantum numbers. Via the chain

rule
∂

∂Rf
=

Rf

ρ

∂

∂ρ
−

rf

ρ2

∂

∂θDf

, (2.136)
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one has

∂Ffi

∂Rf
=

∑

n

δλf λnδjf jnδlf ln

[

Rf

∫ ∞

0
XfΥn(θDf

; ρξ)

(

1

ρ3/2

∂Γni(ρ)

∂ρ
−

1

2ρ5/2
Γni

)

drf

−
∫ ∞

0
rfXf (rf )Γni

1

ρ5/2

∂Υn(θDf
; ρξ)

∂θDf

drf

]

. (2.137)

Equations 2.134 and 2.137 are just one-dimensional quadratures over rf with Rf held fixed. How-

ever, because of eqs. 2.45 and 2.53, both ρ and θDf
vary with rf , i.e., the lines of constant Rf are

not lines of constant ρ. If the sectors of ρ about ρξ were large enough that these quadratures could be

carried out on a single ρ sector, they would be simple. In actual practice, several sectors are usually

covered, and the integral must be carried out in a piecewise fashion with proper transformation to

the functions Υ and Γ used on each sector. If the quantity constructed is the Jacobi R matrix, the

normalization of the Γ’s obtained from the Delves R matrix is arbitrary provided it is consistent

from sector to sector.

2.6.3 Coupled Channel equations

Once the representation of the wavefunction and of the Hamiltonian has been chosen (as already

said, such representation may be different according to the strength of interaction), in order to

integrate numerically equation 2.70, it is necessary to determine the basis functions and the coupled

equations that we get by expanding the function Ξ in eq. 2.70. In Jacobi coordinates it is convenient

to use asymptotic vibrational wavefunctions. They satisfy
[

−
!2

2µ

∂2

∂r2
f

+
!2jf (jf + 1)

2µr2
f

+ vf (rf )− ϵvf jf

]

Xvf jf
(rf ) = 0, (2.138)

where rf = rλf
and vf is the asymptotic diatomic potential of the diatomic molecule of the λf

arrangement channel. The X have the usual normalization,
∫ ∞

0
Xv′f jf

(rf )Xvf jf
(rf ) drf = δv′f vf

, (2.139)

consistent with the factor of r−1
f occurring in eq. 2.77. Expanding the wavefunction, multiplying

by X and integrating over rf we get the usual SF coupled channel (CC, not to be confused with the

Coupled Cluster acronym used in the ab initio formalism) equations,
[

d2

dR2
f

+ k2
vf jf
−

lf (lf + 1)

R2
f

]

GJλivijili
λf vf jf lf

(Rf ) =
2µ

!2

∑

vnjnln

⟨λfvf jf lf |Vf |λfvnjnln⟩

×GJλivijili
λf vnjnln

(Rf ), (2.140)
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where Vf = V − vf with V the total potential, so that Vf is the atom-diatom potential in arrange-

ment f , and integrals involve the Xvnjn and YJM
jnln

basis functions. We note that this set of coupled

equations is satisfied by the real functions F of eq. 2.84 as well as these G. The BF Jacobi wave-

functions use the same X ’s. The BF radial wavefunctions Gli
Ωf

(and their real counterparts F li
Ωf

)

thus satisfy the usual BF CC equations,

h
jf

Ωf ,Ωf−1 GJλivijili
λf vf jfΩf−1 + h

jf

Ωf ,Ωf
GJλivijili

λf vf jfΩf
+ h

jf

Ωf ,Ωf +1 GJλivijili
λf vf jfΩf +1

=
2µ

!2

∑

vnjn

⟨vfjfΩf |Vf |vnjnΩf ⟩GJλivijili
λf vnjnΩf

(Rf ), (2.141)

where

h
jf

Ωf ,Ωf
=

d2

dR2
f

+ k2
vf jf
−

[J(J + 1)− 2Ω2
f + jf (jf + 1)]

R2
f

, (2.142)

h
jf

Ωf ,Ωf±1 =
λ±(J,Ωf )λ∓(jf ,Ωf ± 1)

R2
f

, (2.143)

λ±(J,Ω) = [(J ± Ω + 1)(J ∓Ω)]1/2, (2.144)

and

⟨vfjfΩf |Vf |vnjnΩf ⟩ =
∫ ∞

0
drf

∫ 1

−1
Xvf jf

(rf ) P̂jf Ωf
(Θf )Vf (rf , Rf ,Θf )

×Xvnjn(rf ) P̂jnΩf
(Θf ) d(cos Θf ). (2.145)

Usually, these BF and SF CC equations are to be used only to propagate an R matrix on out to

the asymptotic region that has already been propagated through the strong interaction exchange

region in more appropriate coordinates and constructed by projection (one projection is discussed in

section 2.6.2), so that the boundary conditions can be applied as discussed in sections 2.5.1,2.5.2 and

2.5.3. In this process, the CC equations of the different arrangements channels can be propagated

separately at these large distances, but, after each propagation step in arrangement channel λf , it is

necessary to update all the blocks (including the reactive blocks) of the R matrix that involve λf .

We note that the propagation of the CC equations in Jacobi coordinates in this region is faster

than the propagation in hyperspherical coordinates not only because the different arrangements

can be propagated separately with fewer coupled equations but also because the basis functions

X are independent of the propagation variable and need not to be redetermined at each step. In

the ρ interval in which equations have to be carried out using hyperspherical coordinates (strong

interaction region), the “sector-adiabatic” basis functions which are assumed to change from sector

to sector (but not within a sector) for each ξ-th sector satisfy the eigenvalue equation
{

!2

2µρ2
ξ

[

−
∂2

∂θ2
Df

+
jf (jf + 1)

sin2 θDf

]

+ vf − Evf jf
(ρξ)

}

Υvf jf
(θDf

; ρξ) = 0, (2.146)
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where vf (rf ) = vf (ρξ sin θDf
) is the asymptotic diatomic potential of the λf arrangement as be-

fore. In so doing, we omit θDf
-dependent terms of the form lf (lf + 1)/ cos2 θDf

which occur in

eq. 2.112. If one were to use Delves coordinates at small ρ, one would need to include these terms

in eq. 2.146, and the additional label on the Υ would require solving for many more Υ functions.

When these Υ’s are used in eq. 2.113 together with eqs. 2.111 and 2.112, the resulting SF CC

equations are

{

∂

∂ρ2
+

2µ

!2

[

E −
ρ2

ξ

ρ2
Evf jf

(ρξ)

]

+
1

4ρ2

}

ΓJλivijili
λfvf jf lf

(ρ) =
2µ

!2
×

∑

vnjnln

⟨Υvf jf
YJM

jf lf |V −
ρ2

ξ

ρ2
vf (ρξ sin θDf

) +
!2ln(ln + 1)

2µρ2 cos2 θDf

|Υvnjn YJM
jnln⟩Γ

Jλivijili
λf vnjnln

(ρ). (2.147)

All the terms on the right-hand side except V are diagonal in j and l. Across the sector centered at

ρξ , ρ2
ξ/ρ

2 is nearly unity at large ρ, so that the vf term in V is largely canceled in these integrals

and the local wavenumber on the left-hand side is roughly that of eq. 2.75. This means that, when

we keep all terms and evaluate all integrals by accurate numerical quadrature, these CC equations

behave very similarly to the usual CC equations 2.140 and can be propagated by the same methods.

The BF Delves CC equations are easily derived and have the same relation to eq. 2.141 as eq. 2.147

has to eq. 2.140.

The sector centered at ρξ can be divided into as many intervals and steps as one wishes and

the CC equations propagated across it using the Υ(θDf
; ρξ) and the standard methods. At the

boundary between the ξ-th and the (ξ + 1)st sectors one must transform to the new basis. By

equating wavefunctions and their derivatives, one finds that the Delves R matrix at the left edge of

the (ξ + 1)st sector is related to that at the right edge of the ξth sector by

RJ
Γ(ξ + 1) = ORJ

Γ(ξ) Õ, (2.148)

where O is the orthogonal overlap matrix,

Ofn = δλf λnδjf jnδlf ln

∫ π/2

0
Υvf jf

(θDf
; ρξ+1)Υvnjf

(θDf
; ρξ) dθDf

. (2.149)

These integrals are efficiently evaluated using Gauss-Hermite quadrature, and one can use either the

ξth or (ξ + 1)st quadrature provided one remembers that the equilibrium θDf
and force constant

change with ρ and is thus careful in the evaluation of Jacobians, weights, and functions.
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2.7 From Theory to experimental observables

By summing the square modulus of the detailed Smatrix elements obtained from the integration

of the scattering equations over Ω, Ω′ and p and one can evaluate state-to-state reaction probabilities:

P J
vj,v′j′(Etr) =

1

(2j + 1)

Ωmax
∑

Ω=−Ωmax

Ω′

max
∑

Ω′=−Ω′
max

1
∑

p=0

∣

∣

∣
SJp

vjΩ,v′j′Ω′(Etr)
∣

∣

∣

2
(2.150)

where Etr is the relative collision energy (the total energy E minus the rovibrational energy of the

initial state vj) and Ωmax = min(j, J). In this equation, the Smatrix elements are set equal to twice

the value calculated for a single product arrangement channel because of the symmetry of the N +

N2 system.

2.7.1 Exact probabilities, cross sections and rate coefficients

The experimental observable more directly linked to the calculated S matrix elements is the

product vibrational distribution (PVD). PVDs are obtained out the state to state probabilities calcu-

lated at a given initial vibrotational state of the reactants, by dividing them by the total probability

associated with it. Another quantity relevant for comparison with measurements are the state spe-

cific probabilities, which are easily related to measurements performed for state selected reactants

constrained to bear only a limited interval of values of J. The state specific reactive probabilities,

P J
vj(Etr), are expressed as:

P J
vj(Etr) =

∑

v′

∑

j′

P J
vj,v′j′(Etr) (2.151)

after summation over v′ and j′, in this summation probabilities for even j′ states contributes twice

because the nuclear spin of the N atom is one [79].

The most popular measurables obtainable from the experiment are the cross sections and the

rate coefficients. The integral reactive state-specific cross section can be worked out using the

formula:

σvj(Etr) =
∞
∑

J=0

σJ
vj(Etr) =

∞
∑

J=0

π

k2
vj

(2J + 1)P J
vj(Etr) (2.152)

where kvj =
√

2µEtr/! is the wavenumber of the system in the vj state. Out of the cross section

the state-specific rate coefficients can be calculated averaging over the translational energy by:

kvj(T ) =

(

8kBT

πµ

)1/2 1

(kBT )2

∫ ∞

0
σvj exp (−Etr/kBT ) Etr dEtr (2.153)
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where T is the temperature (in this case, the translational temperature), µ is the reduced mass of the

reactive system and kB the Boltzmann constant. By averaging over the vj initial states (weighed for

the proper thermal distribution function) one can calculate the thermal rate coefficient k(T ).

2.7.2 Approximate quantum methods

The calculation of the thermal rate coefficients implies the integration of the Schrödinger equa-

tion at all the populated vj initial states, all the total angular momentum quantum number values

J contributing to reaction and all the allowed projections Ω of J . This makes the size of the sin-

gle vj calculations proportional to J2 frustrating, in practice, all the attempts to carry out a full

J exact calculation. Even more, for high J values, calculations become increasingly difficult.

In fact, the hamiltonian of eq. 2.16 for J=0 becomes significantly simplified because the terms

(J(J +1)−2Ω2)/2µRR2 and CJ
Ω,Ω±1 are zero. On the contrary, for non zero values of the total an-

gular momentum the non-diagonal terms of the Coriolis coupling must be considered and one may

need to propagate as many as 2J + 1 wavepackets. Thus, it is often necessary to find alternative

simplified procedures.

To reduce the dimensionality of the problem, different approaches have been developed. Two

of them are the sudden [80, 81] and the adiabatic [82–86] approximations. These theories make

diametrically opposite assumptions about the internal angular motion. The sudden theory assumes

that motion is frozen throughout the collision, whereas the adiabatic theory assumes it changes but

with preservation of the bending quantum numbers. The sudden approximation is valid when the

interaction time is short compared with the perturbed angular motion of the diatomic molecule.

The adiabatic approximation applies in the opposite situation, i.e., when the interaction time is

comparable or longer than that of the perturbed angular motion. In general, the angular motion

of most molecules is slow compared with the interaction times for hyperthermal or even thermal

collisions. However, if there is a large amount of induced angular hindering of the diatom by the

atom, then simple sudden dynamics does not apply, except for high collision energies. For those

reactions (which are angularly strongly constrained), the adiabatic approximation is the choice of

election, even (as we shall discuss later) at hyperthermal collision energies. In the case of the N +

N2 reaction, that is a direct one, a sudden approximation is more appropriate. In particular, we shall

discuss here in detail the use of the centrifugal sudden (CS) approximation [87, 88].

In practice the CS approximation implies the cancellation of the centrifugal term. Accord-
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ingly, the angular velocity of the system is slower than the collision velocity and, therefore, the

collision can be considered instantaneous with respect to the orbiting and the projection of the total

angular momentum along the BF Z axis be conserved during the collision. For this reason, the

approximation is also called ”Jz conserving” or ”helicity conserving” approximation. The CS ap-

proximation can be also seen as deriving from the assumption that Ω is a good quantum number.

Rigorously, only the total angular momentum J is a good quantum number whereas Ω is not since

the dynamics of the system mixes up different Ω values. The different Ω values are coupled by the

”centrifugal coupling” terms in the hamiltonian operator of eq. 2.16. This indicates that one has a

separate wavepacket, ψJΩ(R, r,Θ, t) for each value of Ω and that these wavepackets are coupled

together (one wavepacket couples with J + 1 wavepackets when the total parity is even and with

J wavepackets when the total parity is odd). The centrifugal coupling CJ
Ω,Ω±1 makes the hamil-

tonian representation tridiagonal (while the interaction potential is diagonal). Therefore, the CS

approximation consists in simply neglecting the Ω coupling in eq. 2.16. In other words, the CS

approximation considers Ω as a good quantum number and Ω is conserved during the collision.

Using the CS approximation, the hamiltonian representation becomes diagonal and the effort for

its diagonalization does not exceed that of J = 0. This makes the CS based programs suitable for

running on distributed computational platforms and extended CS calculations for all JΩ pairs are

ongoing.

2.8 J-shift approximation

Yet, usually CS calculations are still so demanding that, even for moderately heavy systems

(like the N + N2 considered here), they are often further simplified by adopting the so called J-shift

model [85, 86]. In J-shift approximation, the calculation of the S matrix is performed for a low

value of J (or a certain number of J values) and this value (or this set of values) is used to estimate

the probabilities for the values of J for which calculations are not performed. In the most simplified

version, exact probabilities are calculated only for J = 0.

In the J-shift approximation, the state-specific probabilities for J > 0, P J
vj(Etr), are worked

out by shifting in energy the probabilities obtained for J = 0, P J=0
vj (Etr), as follows:

P J
vj(Etr) = P J=0

vj (Etr −∆EJ) (2.154)

with ∆EJ being defined as:

∆EJ = BJ(J + 1) (2.155)
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and corresponding to the rotational energy of the rigid collinear triatom geometry associated with

the saddle to reaction.

When the saddle of the surface is bent, one can still fit the Ω = 0 probabilities calculated at

different J values using eq. 2.155 as an empirical expression. A more theoretically sound approach

is the one making the probability shift depend also on Ω as follows:

P J
vj(Etr) =

1

2Ωmax + 1

Ωmax
∑

Ω=−Ωmax

P J=0
vj (Etr −∆EJΩ) (2.156)

with ∆EJΩ being defined as:

∆EJΩ = BJ(J + 1) + (A−B)Ω2 (2.157)

that is the homologous of eq. 2.155 for bent transition state systems when the calculations are

performed only for Ω=0. This approach is built on top of the approximation that the geometry of

the system at the bent saddle is a prolate symmetric top one, where B = (B + C)/2 with A, B and

C being the three rotational constants of the triatom at the saddle.
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Chapter 3

Computing GRID

In questo terzo capitolo vengono presentate le caratteristiche delle principali tecnologie com-

putazionali coinvolte nell’ utilizzo della grid come piattaforma di calcolo.

Nella prima parte, sezioni 3.1 e 3.2, vengono esaminate le principali caratteristiche della Grid e dei

codici scientifici attualmente utilizzabili su tale piattaforma. Nella seconda parte, sezioni 3.3 e 3.4,

invece l’attenzione è focalizzata sullo sviluppo di data format specifici per la chimica quantistica e

nella loro implementazione per una migliore interoperabilità degli attuali codici computazionali.

Nell’ultima sezione del capitolo vengono brevemente analizzati i possibili futuri sviluppi del Grid

computing.

• • •

Essential to the feasibility of the present thesis has been the use of advanced computing tech-

nologies of the European computing grid that has allowed us to carry out the related extended

computational campaigns. In the last decades the European Union has been promoting the develop-

ment of large scale facilities equipped with concurrent computing platforms to support the solution

of the so called Grand Challenges in computational sciences. As a matter of fact, the evolution of

computer technologies has gone beyond the policy of individual large computer centers machines. It

has, in fact, led to the gathering of an heterogeneous ensemble of computers (mainly made of cluster

assembled using out of the shelves PCs) and to the creation of a Europe Wide Grid platform called

EGEE [89]. The large amount of resources made available in this way has fostered the development

and the implementation on the Grid of a large number of ICT applications in all fields of human
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activities including Molecular and material sciences and technology (MMST). Such a distributed

usage of the MMST knowledge on the Grid requires the support of new services (mainly based on

intelligent tools for information representation and handling) and is one of the most complex tasks

that can be performed on the Grid. In this contest, Computational Dynamics and Kinetics plays a

key role because of its ability of designing and implementing realistic a priori simulations of the

multiscale type starting from the microscopic level of molecular interactions.

3.1 EGEE: the European Grid for e-science

The mentioned EGEE project was born with the specific purpose of providing Europe with

a Grid infrastructure that could carry out in acceptable times the massive calculations needed by

scientific advances in experiments and related simulations. In particular, the first burst of funding

was mainly associated with the need of gathering the computing power necessary to carry out the

scientific project of CERN LHC (Large Hadron Collider). Only in the second and third biennium

EGEE become more aware of the computing needs of other disciplines.

3.1.1 The key features of the Grid

Grid computing is based on a joint extended effort of compute resources offering, innovative

applications building and high throughput computing machineries assembling. In this respect, the

Grid cannot be identified with parallel computing since its main interest is not high-performance and

peak speeds achieved through fast connections of homogenous processors. Grid computing rather

focuses on high-throughput computing of heterogenous nodes connected on the public network for

complex computational applications which need the gathering of a large ensemble of computer

resources and expertises.

Accordingly, the first feature of a Grid is given by the coordinated sharing of the hardware, software

and knowledge that means an heterogeneous nature of the hardware platform and a composite nature

of the applications considered. This means also that the establishing of a production Grid requires

the implementation of several components including the composition of different skills related not

only to the involved hardware, but also to the specific knowledge of the components of the problems

tackled. The management of these competence based selection of instrumentation and tools requires

great care.
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The second feature of the Grid is given by the heterogeneous architecture of its nodes. The user

can make direct use of just one type of computer, typically a desktop workstation, not only to write,

debug and compile the codes but also to launch the simulation on the grid. A bunch of them can

be used to run highly distributed parts of the application while a high performance supercomputer

can take care of running the tightly coupled (better if parallelized) part of it. Other computers may

be used to take care of rendering the results in a graphical form or to power a virtual reality display

device.

The third feature of the Grid is given by the complexity of the communication software required

to make the whole collection of codes user-friendly. Communication software has to bridge all of

the heterogeneities between different computers, between computers and people and even between

different people as well. This turns the physical connections between computers from a collection

of individual machines into an interconnected computing system.

The fourth feature of the Grid is given by the variety of characteristics of the physical network

that links the various machines, (modem, ISDN, standard Ethernet, FDDI, ATM, or other). Net-

works with high bandwidth and low latency are the most favored for providing rapid and reliable

connections among the machines although, the grid is based on all sorts of network connections.

To actually communicate over these physical connections it is also necessary to have some smart

communication software running.

3.1.2 The Middleware

Given an interconnected communicating network of computers, an operating system that can

be used to configure, manage, and maintain the Grid computing environment, is still needed. This

virtual environment needs to span the extent of the computational Grid and make it usable by both

administrators and individual users. Such an environment will enable the machines and/or the in-

struments (which may be located in the same building, or separated by thousands of miles) to appear

as a single system. This virtual environment, therefore, must provide the administrators with all the

functions needed to tune the system to deal with a changing heterogeneous platform. This software

needs also to speak the language of the user and has, therefore, to fall into the category of problem

solving environments (PSE). More in detail such an environment has to allow the user to get the

best from the platform both when preparing input data and when running the application with no

need to involve him/her in managing related technicalities. The most popular name for this type
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of software is “middleware” and existing middlewares are still in their infancy. Present, choice for

the EGEE Grid is gLite [90]. Glite, derives from the Globus middleware [91] developed at the Ar-

gonne National Laboratory. It has grown through collaborative efforts of more than 80 people of 12

different academic and industrial research centers as part also of the EGEE Project.

Globus provides a toolkit based on a set of existing components with which a concurrent com-

puting environment can be built. The implemented environment is a distributed one allowing to exe-

cute a set of applications using different computational models. Each user can select the application

best suited for his/her system or adapt it for personal use. Graphic interfaces, called translucent,

have been introduced to manage tools and applications and recognize and control mechanisms at

low level. This gives the chance of optimizing performances and adapt all the configurations of the

system to the user needs. An information system is part of the toolkit. Thanks to the grid config-

uration, it is possible to use different networks and computers with respect to problems related to

hardware and software facilities. The programmer needs not to define an a priori static configura-

tion of the application environment yet the grid offers tools which dynamically find out resources

and configurations of the system for an efficient execution, and allocates them in a transparent way.

From its very beginning Globus was organized around four main activities:

1. Research: the study of basic problems in areas such as resource management, information

services, security and data management have been addressed. It focuses not only on the is-

sues associated with the building of computational grid infrastructures, but also on problems

arising from the design and the development of parallel applications which use grid services.

Uniform and scalable mechanisms for naming, locating, and allocating computational and

communication resources in distributed systems have been developed so far. Basic Grid ser-

vices have been integrated into existing application development frameworks, environments

and languages (e.g. CORBA, Java, Perl, Python). Collaborative efforts have been devoted

to the design and the production of an infrastructure-level architecture for data management,

called the data grid. Finally, requirements, designs and prototypes of a Grid information

service as well as an enabler for dynamic application configuration and adaption, have been

worked out.

2. Test beds: Supports and assistance to initiatives for planning and building large-scale proto-

typed packages acting as test-bed ( both for internal research and for production use by other

scientists and engineers) have been provided.

3. Software tools: Pieces of software running on a variety of platforms acting as general instru-
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ments available on the grid have been developed and are continuously being updated.

4. Applications: Several large-scale packages have been designed and implemented in a coop-

erative fashion by scientists and engineers on the grid to serve as commonly used applicative

software. To this end basic technologies enabling entirely new classes of applications have

been developed. The net result is a set of programs allowing to advance in the understanding

of how to build programs for the grid, how to focus the research efforts of the project and how

to evaluate the utility of the tools developed.

Based on Globus toolkits many software components implementing the above described ser-

vices have been developed. Out of it three different middlewares have been proposed: ARC, Unicore

and gLite for the European grid. As already mentioned the one adopted by EGEE is gLite.

3.1.3 Building on national projects

In order to experiment the assemblage of a suitable Grid infrastructure in Italy, a national FIRB

project [92] called “Piattaforme abilitanti per griglie computazionali ad alte prestazioni orientate

a organizzazioni virtuali scalabili (shortly called GRID.IT)” was launched in the year 2002 [93].

GRID.IT was aimed at gathering together at national level the efforts of designing advanced net-

working hardware, defining appropriate middleware and implementing grid enabled applications.

Within GRID.it a workpackage (WP13) was established to the end of designing grid enabled cal-

culations codes for molecular simulation. As a matter of fact WP13 has assemblated an ab initio

Simulator called SIMBEX (SImulator of Molecular Beam EXperiments). For this purpose a pro-

totype Grid infrastructure called CHEMGRID was also built around a cluster of computers owned

by the Chemistry Departments of the Universities of Bari, Bologna, Naples and Perugia and the

Milan, Padua and Perugia local sections of the ISTM CNR Institutes plus the Computational Chem-

istry laboratory of ENEA at the Casaccia location. CHEMGRID, managed by the homonimous

cluster of computers of the University of Perugia, was also linked to the computing resources of

the Department of Physical Chemistry of the University of the Basque Country in Vitoria Gasteiz

(Spain) and to the computing resources of the Department of Physical Chemistry of the University

of Barcelona in Barcelona (Spain). Other projects were launched in Italy on a regional scale (POR),

similar projects were launched in several other European countries with the support of National or

regional governments.
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3.2 The European project EGEE

Also at European level there have been several projects aimed at promoting the assemblage of

grid platforms. As to the Chemistry area an important Europe wide project aimed at establishing

a distributed computing platform has been the COST Chemistry action D23 [94] “METACHEM:

Metalaboratories for complex computational Chemistry Applications” launched by our CDK labo-

ratory in 1999. D23 was followed by the D37 Action “Gridchem Grid Computing in Chemistry”

coordinated by the ETH of Zurich in which our laboratory was coordinating the working group

QDYN (dealing with quantum reactive dynamics) and the HPC laboratory of the Department of

Mathematics and Informatics the ELAMS one (dealing with e-science approaches to Molecular

properties).

A more systematic approach to grid computing in chemistry became possible when the European

Union funded within the Framework Programs 6 and 7 (FP6 and FP7) the design and the construc-

tion of a Europe wide production Computing Grid. The project, called as already mentioned, EGEE

(European Grid for E-sciencE) [89] has been first approved for two years and then renewed twice

for additional two years each time (EGEE II and EGEE III respectively). EGEE has established

a Consortium consisting of more than 90 partners from 32 countries, grouped into 13 federations

and representing almost all major and national Grid efforts in Europe, as well as projects from the

US and Asia (see Fig. 3.1). In addition, a number of related projects will extend the infrastructure

further, to the Mediterranean area, Baltic States, India, Latin America and China. Combined with

other related projects spurred out from or affiliated with EGEE, EGEE-II, and the present EGEE III,

this project has played around the world.

3.2.1 The grid for scientific communities

With the existing Europe wide EGEE production grid platform consisting of about 100.000

processors researcher form academia and industry already benefit from an e-Infrastructure support

to many applications from various scientific areas to which a shared pool of resources, independent

of geographic location, with round-the-clock access to major storage, compute and networking fa-

cilities is guaranteed. The EGEE project aims also at significantly extending and consolidating this

infrastructure that links national, regional and thematic Grid resources and interoperates as well as

with other Grids around the globe. The resulting high capacity, world-wide infrastructure greatly

surpasses the capabilities of local clusters and individual centres, providing a unique tool for collab-
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orative computing in science (“e-Science”). So far, several large- and small-scale communities use

the EGEE infrastructure as an every-day tool for their work. Applications deployed go from High

Energy Physics to Life Sciences, Earth Sciences (including the industrial application EGEODE),

Astrophysics. Thus include, as well, Computational Chemistry.

Figure 3.1: Partner countries of the EGEE project.

EGEE has also fostered the constitution of organized Virtual communities (called Virtual Orga-

nizations or VO) specifically devoted to the clustering on the grid of members of a given scientific

community. Thanks to all this EGEE has been able to further develop its infrastructure into a truly

pervasive global platform for e-Science.

3.2.2 COMPCHEM: the molecular science Virtual Organization

The VO for the Chemistry community is called COMPCHEM and has been recently launched

by the CDK laboratory. COMPCHEM [95] has been assembled by a group of molecular and ma-

terial sciences laboratories committed to implement their computer codes on the section of the

production EGEE Grid infrastructure available to the VO. It has been admitted to EGEE II as an

unfunded partner and then it has been funded by EGEE III with 9 FTEs (Full Time Expert) quotas.

COMPCHEM Virtual Organization offers to its members clear advantages for carrying out

their computational campaigns (especially when they are so complex to not be feasible using other

computing platforms). Only in this way the laboratories will take the burden of carrying out the

extra duties necessary to work within a collaborative environment. Therefore the entry level of the

VO offers to the user the possibility of implementing a code at wish for personal use. This entry
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level membership situation has a limited validity and is targeted to check the laboratories on their

real willingness to operate on a Grid platform. Already at this level, in fact, several competences

necessary to restructure the code to run in a distributed way by exploiting the advantages of using

a Grid platform need to be acquired. In return one gets the advantage of distributing the code on a

much larger platform and an easier interaction with the codes of other users of the VO.

As sketched in Table 3.1 one becomes actual member of COMPCHEM only after committing

him/ herself to open the code implemented on the Grid to a shared use by the other members of

the VO. This implies the validation of a stable version of the code and the assemblage of all the

necessary GUIs for use by other researchers. It also implies software maintenance services and user

support. It may also imply the commitment to confer to the Grid additional hardware (especially for

these suites of codes needing special devices) after a negotiation with the Management Committee

(MC) of the VO about the relevance of such a commitment to the strategic choices of the virtual

organization. Obviously, the conferring of both software and hardware to COMPCHEM will take

place gradually due to the time needed to validate the software and to gridify the machines. A

member will likely devote to VO related activities other unshared resources (e.g. for development

work). To become member of the VO and acquire the status of “COMPCHEM stakeholder” a user

should place a specific application to the MC. While the user status has a limited time validity

(after which a user may become either a paying customer and/or a paid supplier of services) the

status of member has no time limit (though its terms could be periodically revised). The status of

COMPCHEM member may imply further levels of involvement. The stakeholder, in fact, should

take care of maintaining the software and the local segment of Grid hardware (a particular attention

is needed for the conferring of software, either commercial or not, with special constraints like the

payment of fees since in this case commercial, legal and financial aspects are better dealt centrally).

The members of the VO are requested to be proactive in providing either their own work or at-

tract financial resources specifically for the development of the VO. As to contributing by providing

their own work this may be under the form of participation to the management of the Grid, to the

development of WMs, etc.. As to attracting financial resources VO members should elaborate joint

applications for funding, research projects and even develop within the VO commercial services.

However, the most important contribution to the sustainability of COMPCHEM that is requested to

the stakeholders is a high dynamism in research and in the transfer of its outcomes into innovation

and developments (R&D). This means that, ideally, all members of the VO should excel in basic

and applied research and that a proper reward for that has to be given in the VO. Work is ongoing

in our laboratory to develop tools for that purpose.
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Membership level Description

Passive: Run a program implemented by other members
User of the VO

Active: Implement at least one program for personal use
Passive: Implement at least one program for use by

SW provider other members
Active: Interactive management of the implemented
program for cooperative usage
Passive: Confer to the Grid infrastructure at least

Grid a small cluster of nodes
deployer Active: Operates above the minimal level as support

for the Grid deployment and management

Stakeholder Take part to the development and the management of
the VO

Table 3.1: Levels of membership in COMPCHEM.

3.2.3 COMPCHEM applications

As already mentioned the COMPCHEM main asset are the computational chemistry gridified

applications for shared usage. Among them the most prominent one is GEMS the Grid Empowered

Molecular Simulator. For this purpose several of its component programs have been ported to the

Grid and have been run in production. Efforts are also underway to port additional applications to

the EGEE infrastructure and to promote wider collaboration between the computational chemistry

research groups.

Specific efforts have been addressed at implementing grid empowered versions of quantum

reactive scattering codes dealing with atom-diatom systems which is also the task of the QDYN

working group of the COST Action D37. A brief description of these programs follows:

- ABCtraj [96] calculates the observables of atom-diatom reactions in gas phase by integrating

related Hamilton equations in Jacobi coordinates starting from selected or randomly initial
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conditions. The program is linked to a molecular virtual reality environment that produces

animated pictures of the trajectories and virtual monitors to read observable properties.

- VENUS [97] calculates the cross-sections and rate coefficients for elementary chemical reac-

tions by integrating classical equations of motions whose initial conditions are either directly

determined or sampled using a Monte Carlo scheme. This application is a modified version

of the VENUS96 program by W.L.Hase (QCPE-671). It integrates the Hamilton equation

in cartesian coordinates. Before the collision the molecules are selected at discrete internal

energy states and after the collision a quantization of the internal energy is also enforced on

the product molecule. A parallelized version based on MPI has been also implemented.

- DL POLY [98] is a package of subroutines, programs and data files, designed to facilitate

molecular dynamics simulations of macromolecules, polymers, ionic systems, solutions and

other molecular systems on a distributed memory parallel computer. The package was written

to support the UK project CCP5 by Bill Smith and Tim Forester on grants from the Engineer-

ing and Physical Sciences Research Council. It is property of the Science and Technology

Facilities Council (STFC). Two versions of DL POLY have been implemented. DL POLY 2

is the earlier version and is based on a replicated data parallelism. It is suitable for simula-

tions of up to 30.000 atoms on up to 100 processors. DL POLY 3 is a domain decomposition

version, written by I.T. Todorov and W. Smith, and is designed for systems beyond the range

of DL POLY 2 - up to 10.000.000 atoms (and beyond) and 1000 processors. More recently a

new release and several bug fixing have been issued.

- RWAVEPR [35] integrates rigorously the three-dimensional time-dependent Schrödinger

equation for a generic atom-diatom reaction by propagating wave packets. It calculates the

elements of the S scattering matrix for given values of the vibrational quantum number, the

rotational quantum number, the total angular momentum quantum number, the quantum num-

ber for the projection of the total angular momentum on the atom-diatom vector, for a given

the parity and for a given range of total energies. Out of the value of the S matrix elements

the state-to-state reaction probabilities are calculated. The centrifugal sudden approximation

(i.e. to neglect the Coriolis coupling) can be also invoked.

- COLUMBUS [99] is a collection of programs for high-level ab initio molecular electronic

structure calculations. The programs are designed primarily for extended multi-reference

calculations on electronic ground and excited states of atoms and molecules.

- GAMESS [8] is a program for ab initio molecular quantum chemistry. Briefly, GAMESS can

VIRT&L-COMM.9.2016.3

ISSN: 2279-8773



The computing GRID 77

compute SCF wavefunctions ranging from RHF, ROHF, UHF, GVB, and MCSCF. Correlation

corrections to these SCF wavefunctions include Configuration Interaction, second order per-

turbation Theory, and Coupled-Cluster approaches, as well as the Density Functional Theory

approximation. Geometry optimization, transition state searches, or reaction path following,

vibrational frequencies with IR or Raman intensities and a variety of molecular properties,

ranging from simple dipole moments to frequency dependent hyperpolarizabilities can be

computed. Most computations can be performed using direct techniques, or in parallel on

appropriate hardware. A detailed description of the program is available in the paper: “Gen-

eral Atomic and Molecular Electronic Structure System” M.W. Schmidt, K.K. Baldridge, J.A.

Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S.Su,

T.L. Windus, M. Dupuis, J.A. Montgomery J. Comput. Chem., 14, 1347-1363(1993).

- ABC [100] is a program that uses a coupled-channel hyperspherical coordinate method to

solve the Schrödinger equation for the motion of the three nuclei (A, B, and C) on a sin-

gle Born-Oppenheimer potential energy surface. The coupled-channel method used involves

a simultaneous expansion of the wavefunction in the Delves hyperspherical coordinates of

all three chemical arrangements (A+BC, B+CA, C+AB). The quantum reactive scattering

boundary conditions are applied exactly at the asymptotes potential, and the coupling be-

tween orbital and rotational angular momenta is also implemented correctly (though some

approximations can also be introduced) for each value of the total angular momentum quan-

tum number.

- MCTDH [101] is a program implementing the MultiConfigurational Time-Dependent Hartree

(MCTDH) method that is nowadays considered as one of the most powerful tools for calcu-

lating rate coefficients and dealing with multidimensional systems using quantum techniques.

Unlike conventional wave packets methods, in the MCTDH approach the wave function is

expressed on a basis of time-dependent one dimensional functions, which evolve along with

time. The use of this time-dependent basis set turns up into a much smaller basis dimension

and thus a greater computational efficiency with respect to standard wave packet approaches.

- FLUSS [102] is a program performing a modified Lanczos iterative diagonalisation of the

thermal flux operator. The output of the code is a set of eigenvalues and eigenstates which

can afterwards be used to calculate the thermal rate coefficient of the reactive process. A

Krylov space is generated by recursive application of the thermal flux operator onto an initial

wave function, typically a Gaussian-type wave packet located in the vicinity of the transition

state. The matrix representation of the operator in the Krylov-type basis is diagonalized to
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obtain eigenstates and eigenvalues.

- SC-IVR [103] is a program using the Semiclassical (SC) initial value representation (IVR)

methods are used to calculate the thermal rate coefficients for the atom-diatom reaction (like

H + H2, N + N2, O + O3). This program uses Cartesian coordinates in the full space to carry

out the calculations. As is customary in quantum mechanical treatments SC-IVR does not

invoke the conservation of total angular momentum J to reduce the problem to fewer degrees

of freedom and solve the problem separately for each value of J. The various ingredients of

the SC-IVR program are: first the semiclassical coherent-state propagator of Herman Kluk

(HK) is applied. Second, the Bolzmannized flux operator is tuned continuously between the

traditional half-split and the Kubo forms. Third, the normalization integral is expressed in

terms of simple constrained partition functions.

3.3 Aiming at interoperability

A fascinating problem prompted from the cooperative nature of the grid is interoperability.

This means the possibility for programs to run on the different machines of an heterogeneous (dis-

tributed) platform. The other aspect of interoperability is the possibility of utilizing data coming

from different program in a cooperative fashion in which data produced from a program need to be

used (if it is the case also together with data from another program) by another program.

3.3.1 Data Formats for Quantum Chemistry

Significant efforts along thus direction have been already spent to develop common models

and shared formats for Quantum Chemistry. Quantum Chemistry codes are nowadays very popular

and their use is not confined to the community of theoreticians but it is open to the chemistry

community at large. For this reason these programs include various tools for the calculation of

different properties of atoms and molecules. These additional utilities are extended continuously by

various group of developers. The new tools often refer to programs modified for internal use. For

this reason tools developed by different groups are not, in general, interoperable. As a matter of

fact, they

i) use different input and output formats
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ii) do not bear common communication channels

iii) cannot import features from another code (in the case of commercial codes it is often also

illegal)

All these difficulties make the collaboration between research groups awkward and often lead to

a duplication of work. A common platform for program development and for allowing the use of

different tools and different computer programs, was proposed by Angeli et al. [104] within the

activities of the Working Group “A meta-laboratory for code integration in ab initio methods” [105,

106] of the COST in Chemistry D23 project “MetaChem”. In order to integrate different QC codes

in a common workflow a first problem is the coordination of the different formats adopted by the

various codes. Of course, in order not to invent “yet another format” the driving idea was to design a

format as general as possible in coordination with other similar initiatives in Europe and elsewhere.

This type of problems have been already discussed in the literature and the scheme adopted in my

thesis relies on the related literature. In particular, for general data storage the XML [107] format

and the HDF5 (Hierarchical Data Format) technology [108] have been proposed. Several well know

chemistry programs adopt an XML based format for their internal storage. Along this line a project

based on the use of CML (Chemistry Markup Language) [109] as a new approach for managing

molecular information has been started in UK in the year 2000. More recently its computational

variant, CMLComp, has begun to be developed to the end of including entities relevant for the

computational domain. In QC calculations two different kinds of information have been identified:

small data, mainly ASCII coded, and large data, normally binary coded. While ASCII coded data

are described in the proposed format with a specifically designed Mark-up language (QC-ML), large

binary data files are organised in a HDF5 based format called Q5cost. In the following section this

two kinds of data storing schemes are described more accurately.

3.3.2 The QC-Markup Language

The general description of the chemical system of interest can be given at quantum chemistry

level by a collection of data of different kinds (the already mentioned “small data”). This type of

data can be classified as:

• Base facts: initial data describing the physics of the system like stoichiometry, geometry,

symmetry and basis set information.
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• Derived facts: quantities computed from the previous ones using QC algorithms like en-

ergies, properties, integrals, coefficients, input data specifying the type of computation, the

level of theory and so on.

In the first category we can devise three different classes of data, describing respectively:

Symmetry: the symmetry of the system in terms of group name and other symmetry data;

Geometry: the atomic composition of the system and its cartesian coordinates;

Basis: the basis set information, either given by name or in detail.

For this set of “small” data a mark-up language is adopted (this enhances the readability and

the standardization) that is called QC-ML (Quantum Chemistry Markup Language). The QM-CL is

defined by a XML-Schema that can be found on the internet (http://abigrid.cineca.it/), together with

the proper html documentation.

3.3.3 The QC-ML structure

The structure of a QC-ML file is divided into two sections. The first part contains the descrip-

tion of the already mentioned Base Facts, grouped in the tag <molecule> containing as attributes

the number of electron, the electric charge and the spin multiplicity. In those groups we can find

other groups specifying the spatial symmetry (<symmetry>) of the molecule, the atomic compo-

sition and geometry (<geometry>) and the atomic basis set (<basis>). Such structure can be

so represented as:

<molecule nElectrons charge spinMuliplicity>

<symmetry ...... />

<geometry ...... />

<basis ...... />

</molecule>
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The system symmetry is described using the group name that references a repository contain-

ing all possible Abelian Symmetry Groups described with their generator.

The system geometry is described by a list of atoms and their cartesian coordinates; the user

can choose to list all atoms or only the ones which are unique for symmetry. In this case the coor-

dinates of the missing atoms are generated using the group generator contained in the symmetry tag.

The system basis is described by means of Gaussian type basis functions for each atom, with

their exponent and contraction coefficients. The user can specify all these quantities with the use

of different tags like <angularMom>, <exponents>, <contraction> etc. As an alternative

it is possible to define a basis for each atom by means of standard names for the basis set family

(cc-DVZ, Sadlej, etc.); in this case the contraction coefficients and the exponent are retrieved from

the EMSL database.

The second section of a QC-ML file is intended to contain the Derived Facts, e.g. data that can

produced as an effect of running a QC program. Now it is clear that while the first section is kept

untouched during the calculation, the second one is constantly modified or upgraded during the QC

runs. The fundamental tag defining this section is <computedData> which may contain three

fundamental subtags: energy, properties and file.

<computedData>

<energy unit levelOfTheory quality value>

<state spaceSymmetry spinMultiplicity excitationLevel />

</energy>

<property unit levelOfTheory quality value>

<state ’’bra’’ spaceSymmetry spinMultiplicity excitationLevel />

<state ’’ket’’ spaceSymmetry spinMultiplicity excitationLevel />

<operator order name/>

</property>

<file address URL/>

</computedData>
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The tag <energy> contain the computed value of the molecular energy. It requires the pres-

ence of the attributes to define the unit system and the level of theory of the calculation, and of the

subtags <state> to specify the electronic state to which it refers.

The tag <property> is used for the storage of theoretical properties of any order, in the usual

perturbation theory sense. It requires the same attribute of <energy> but more child tags: the left

hand (“bra”) state and the right hand (“ket”) state, as well as the operators involved.

The tag <file> contains the linking information to a separate binary file that stores all the

computed “large” binary data, like one and two electron integrals and MO coefficients. This file

is generally identified by its Uniform Resource Location (URL) that is a standard and unique way

to identify a file over the network. The file data format is Q5cost based on HDF5 and is described

in the next section. Since FORTRAN is the most common programming language used by QC

programmers a specific FORTRAN 90-XML library was written to manage the XML format to be

used to produce wrappers. The library is based on publicly available C binding (gdome2 [110]), it

implements a DOM model and it allow users to write or read any specific XML element using a

FORTRAN Application Programming Interface.

3.4 The proposed format

For the large set of binary data (typical of quantum chemistry) a technology combining porta-

bility, efficiency, FORTRAN linkability, data compression and easy access to information is needed.

The HDF5 [108] library has been suggested for that purpose and for the definition of the related ab-

stract model. HDF5 abstract model for managing and storing data as well as the related library

implementing the model is developed and maintained by NCSA/UIUC (http://hdf.ncsa.uiuc.edu).

The main reason for choosing HDF5 is that it can support unlimited size file, is extensible and

portable. It also addresses the issues of efficient data access and storage, of describe an unlimited

variety of data types and of containing efficient tools for data compression and file inspection.
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3.4.1 The Q5cost tool

HDF5 has a hierarchical structure and appears to the user as a direct graph (conceptually similar

to the UNIX type file system). The components of this tree-like structure are:

• Groups (corresponding to “directories”)

• Dataset (corresponding to “files”)

• Attributes (or metadata: low dimensional data describing the other data)

All these components can be easily managed by the HDF API. Moreover HDF5 is unique in its

ability to distinguish data from metadata even if they are stored together.

Accordingly, the common interchange format for large binary data coming from quantum chemistry

calculations Q5cost and the related library have been defined.

This abstract data model of Q5cost is based on the following criteria:

1. Importance of the metadata concept;

2. Matrices are common data structure in QC;

3. Chemical data are related whithin a hierarchical structure.

Metadata. When a large quantity of different types of simple data must be handled (nuclear

energy, molecular orbitals labels, molecular symmetry and so on.) they are called metadata to

distinguish them from the real large information on the chemical system such as the integral values.

Metadata represent well known chemical entities and belong to three generic classes: scalar, vector

and n-index arrays. For example, among QC data the nuclear energy is a floating point scalar,

molecular orbitals are an (N,M) floating point 2-indices array, the associated orbital energies are

floating point vector, the molecular orbital labels are a vector of strings and so on. The library

should provide an interface for accessing these data both as generic or specialized entities.

Matrices data structure. Large matrices with an arbitrary number of indices are common data

structure in quantum chemistry. This is the case for entities like two-electron integrals (rank-4

arrays) or for other more application-specific information, like the four particle density matrices

(rank-8 array). These large data arrays share the following common features:
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• they are usually integrals, whose evaluation involves one or more operators and a given num-

ber of functions. These functions are referred by the indices of the matrix.

• the rank of the matrix depends on the operator involved, an n-particle operator giving rise to

a rank-2 array. Atomic basis set overlap is described by two indices, and can be stored as a

rank-2 array. Two-electron integrals have four indices imposing a rank-4 array and the four

particle density matrix has eight indices, requiring a rank-8 array.

• additional information is needed to identify the operator involved. The latter is in general a

tensor in the physical space, so we also need to specify the component (cartesian/spherical) for

each matrix. Moreover for each operator component one has to specify the spatial symmetry

and real/imaginary nature of the stored values (e.g. magnetic dipole). Symmetry may also

reduce the number of matrices to be stored.

All these data objects could be described as one “generic property”. Since some of these “proper-

ties” are well known chemical entities and chemists are used to refer to them by name a specific

library access to most of them was proposed in addition to a general interface to handle the “generic

properties” to ensure both ease of use and flexibility of the library.

Hierarchical structure. All these chemical objects are related within a hierarchical structure

and logical containment relation can be defined for them. A root container, named System, rep-

resents the molecular system and its structural information. We can associate to this container all

the metadata that are invariant at the level, mainly information about the spatial reference frame. A

system may contain several “Domains”. The role of Domains is to group together properties related

to the same kind of functions. Three domains have been formulated as fundamental: AO for atomic

orbital, MO for molecular orbital and WF for wave-functions. Each domain can contain other con-

tainers. Moreover a set of invariant metadata, different for each type of domain, is associated to it

and stored as Scalar, Vector and Matrix entities.

The AO Domain holds properties referring to the atomic basis set functions: overlap, one-electron

and two-electron integrals on the atomic basis set, in addition to the generic property. The invariant

metadata consist in information on the atomic orbitals, like their number, the labels and symmetry.

The MO Domain holds properties referring to molecular orbitals: one-electron and two-electron

integrals on the MO basis set, in addition to generic properties. The descriptive metadata for the

domain refer to the MO basis description. Their number, labels and symmetry, the AO basis they

were derived from, the matrix collecting the coefficients of the MO expansion on the AO basis,
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orbital energies, classification and occupation numbers.

TheWF Domain holds properties referring to the electronic states. The complete definition of this

container is not available yet. It is still subject of research and development, given its non-critical

nature for the first deployment and test of the library. For each domain, different occurrences can

be defined by means of an identifier (tag) chosen by the user, with a default value if no tag is pro-

vided. The aim is to provide storage of multiple entries for each Domain, like in the case of multiple

molecular orbitals in the MO Domain, or multiple basis sets in the AO Domain.

The bottom level of the hierarchical scheme is made of the properties. Even if from the user point

of view many different “properties” are available, all of them are different instances of the same

“generic property” object. This object holds the true data, i.e. the integral values and the corre-

sponding index values. Also here, in order to fully define the nature of the actual property, some

metadata are needed: name, rank, symmetry and type (i.e., real, imaginary or complex). In ab initio

codes, the two-electron integrals, either on the atomic or the molecular basis set, are among the

largest data set. For this reason, an efficient management of these integrals is crucial for obtaining

a good performance. The whole set of N integrals, with the corresponding indices, can be stored

within a linear structure like one reported below:

(val1; i1, j1, k1, l1)

...

(valN; iN, jN, kN, lN)

where val is the floating value of the integral with integer indices i,j,k,l. The simplest solu-

tion is to store both the integrals and the four indices, so the order of the records does not matter.

Moreover, null or small integrals can be simply omitted from the list, a fact particularly important

when working with local orbitals. For this reason, at the moment, this is the only strategy that was

adopted in the Q5cost data format. The price one has to pay is the additional storage of the four

integer orbital labels, leading to a memory/disk occupation that could be three times larger than

the one if only integrals were stored. In the case of very large integral files, this overhead can be

extremely heavy. For this reason, in many QC programs the integrals are stored in a well defined

order, the “standard order”, so that the orbital labels can be omitted without loss of information.

(In the presence of spatial symmetry, a large number of zero integrals are present, and the standard

order can be modified in order to take into account this fact). At present only the simplest solution

has been implemented in Q5cost.
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3.4.2 The Q5cost library

The Q5Cost library provides read and write access to files defined in accordance with the data

model described before (Q5cost data model). It provides a specifically designed high-level access

for quantum chemistry developers. The rationale is to provide a FORTRAN interface based on well

known chemical entities, rather than groups or datasets like in the original HDF5 interface. HDF5

takes care of the low level management of the file, and Q5Cost provides the high-level Application

Programmer Interface for storage and retrieval of chemical entities.

Library structure

The Q5cost library is written in FORTRAN 95 and consists of several modules of which the

most important are: Q5cost, Q5core and Q5error.

Q5cost is the main reference for the final user. It provides subroutines to read and write HDF5

files in the Q5cost format with a high level of abstraction. Using this library the users can deal with

high level concepts without worrying about low level implementation details. If a finer access is

required for the underlying HDF5 file, the Q5Core module provides this type of access in a simpler

way with respect to the raw HDF5 routines. One important aspect of this format is that the user is

not forced to enter all the quantities; he can store the quantities which are actually available, or in

which he is interested, and add other data later when available.

Q5core is a low level module designed to provide wrapping facilities between HDF5 and

Q5Cost. At the moment it is focused on providing additional debug information, reference counting

for HDF5 objects, additional low-level API for simplifying common tasks and so on. This module

provides path-based management of Scalar, Vector and Matrix entities (in contrast with the context-

based approach of the Q5Cost module, which focuses on chemical concepts rather than HDF5 path).

It also provides routines for the easy handling of the Property data (indices and values), relative to a

CompactMatrix class (CM). End users in general should not access Q5Core module routines. The

Q5Core module guarantees the transparency of the Q5cost data model with respect to the underly-

ing technology. In case we decide to use another storage format in place of HDF5, only this module

should be modified.
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Q5error module provides subroutines for debugging and monitoring the behaviour of the li-

brary and the application code.

3.4.3 The Wrappers

Based on the Q5-ml/Q5cost common data format and using the specific libraries for the I/O

operations, some interface programs (wrappers), for converting data from ab initio program system

to the common format, are written. In general, wrappers accomplish a quite simple goal: read quan-

tities stored in a given data format and write them in a different data format using the specific I/O

library for the two formats.

For a given QC code, the input wrapper reads data from the common format file and converts

them into the QC code specific input while the output wrapper reads data from the QC code spe-

cific output and adds them to the common format file. A future development of this technology is

related to the definition and the set-up of a “machinery” for running user-defined workflows based

on heterogeneous codes, located on different platforms and communicating through the common

format. This grid based infrastructure should work, from a logical point of view, as reported in

fig. 3.2. The idea is to have a sort of central repository, based on the common format, containing all

Figure 3.2: A logical scheme of the workflow machinery.
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information about the chemical system under investigation. When a specific program has to be run,

a code specific input-wrapper will translate the data from the repository into the code specific input

files. Then the program can be executed. The output data produced, through the output-wrapper,

will be used to update the central repository. The infrastructure must satisfy both grid requirements

(fault tolerance, reliability) and human interface requirements (web-based interfaces, user-friendly

environments).

3.5 Towards the European Grid Initiative

The EGEE III project is going to expire the end of April 2010 and the EU has already launched

its successor EGI (European Grid Initiative). The most important novelty of EGI is that while

its stakeholders will be the National Grid Initiatives (NGI)s of the countries which are ready to

contribute in terms of funds and efforts, the scientific lead will largely be taken by the thematic

Specialized Support Centres (SSC). The SSCs will gather together the communities associated with

the VOs belonging to a common research European area.

3.5.1 The Chemistry and Material Sciences and Technologies SSC

An SSC called CMST (Chemistry and Material Sciences and Technologies) will be proposed

by the related communities. The proposed CMST SSC will take care of the user VOs of COM-

PCHEM, GAUSSIAN (from the homonimous QC package), VOCE (a material science communi-

ties). Other communities like the ones associated to the material science community of Northern

Europe (Finland, Sweden, Norway, Denmark), ENEA, etc. as well as other Chemistry communities

will be assisted to develop grid skills and to implement their codes on the European Grid. The above

mentioned pool of laboratories have already established themselves as the third ranking community

operating on the EGEE production grid. Moreover, they have developed the necessary skills to

manage an SSC.

This will primarily mean to support the related infrastructure and help the members of the related

community in implementing and using an environment of shared hardware and Software resources

on the grid. The net result of that effort will be an encouragement to implement on the grid of the

large variety of computer codes and algorithms designed by or for the members of the molecular
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and material science community.

The SSC will be, in fact, operating in the direction of lowering the technological barriers to the

use of the grid created by the rapid evolution of computer technologies (which remain hard to mas-

ter for CMST researchers who are experts in other odmains of scientific knowledge). This will be

achieved by offering the necessary assistance and guidance to the CMST researchers wishing to im-

plement their programs on the grid. In this respect the SSC will inherit also the Hands on school for

molecular and material sciences applications already established by COMPCHEM (held in Trieste

on September 2008 and already planned for reiteration by the end of this year) and plans to extend

it to offer a broader training on the implementation of molecular and material sciences softwares

on the grid. The SSC will also make available to the members of the community some stable ver-

sions of codes of interest for the community as a grid version of some program exchange libraries.

These codes could be either implemented on the grid by its members, or gathered from existing

scientific libraries or available as open source or for free circulation. Special agreements could be

also arranged for some commercial codes. To help the users and members with a user firendly uti-

lization of the codes the CMST SSC will be engaged also in developing (for some of them) specific

interfaces and will encourage its members to develop even more complex (and at the same time

more realistic) grid enabled collaborative simulations. This will further motivate the development

of specific portals, graphical interfaces, workflows etc. suited to user friendly handle the various

simulation packages, render output and intermediate data, select the optimum segment of the grid,

import and link the necessary tools etc. for which the support of an appropriate organization based

on specific skills and procedures is necessary. This will also prompt the implementation on the grid

of libraries and packages of support to scientific computing and the acquisition to the grid platform

of high performance computing nodes with higher sizes of memory and various levels of parallelism

as well has the adoption of appropriate parallelization tools.

The other important result will be the increase of efforts in the work aimed at developing models

and standards concerning molecular and material sciences and technologies knowledge (data and

programs). This will definitevely boost the development of connections among the various codes of

the community and the reuse of the available software products. In particular, for example, this will

further enhance the development of models and standards for Quantum Chemistry (QC) data and

its reuse by other computational applications. Typically this is the case of the already mentioned ab

initio electronic structure outputs of several QC packages (each of which has its own format) which

need to be assembled together or to be provided as an input for other programs in a row or in parallel

in complex CMST simulations. The proposed standard for ab initio QC data, QC5cost, tailored on

the DALTON package and meant to be ported on the grid has been already worked out as a result of
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the EU collaborative initiative COST. Related procedures were specifically designed for porting on

grid environments with the motivation that they will make the assemblage of repositories, tools and

workflows easier and will advance, as well, efforts in prediction, design and analysis using multiple

codes, across multiple disciplines, and for an open user base. An increasing availability of QC digi-

tal data (interfaced with users and codes) will have a profound impact in both the quality and rate of

discovery of the CMST community. Future implementations can also be foreseen for an extension

of the models and standards to Quantum Dynamics.

3.5.2 Web service approach

Most of the effort paid by the CMST SSC in providing software in a user friendly way will con-

centrate in developing a usage of the codes as grid services. This will be addressed both to simple

users (who wish to get their goals accomplished without needing to know the details of the meth-

ods employed) as well as to the advanced users (who want to compose complex applications out of

solid building blocks) while devoting their efforts to developing enhancements in the procedures by

introducing significant (either in terms of conceptual innovation or in terms of gathering together

non negligible amounts of different pieces of software) advances in the methodology. As a matter of

fact, in the CMST community there is already a large fraction of people making massive use of well

established (commercial and non commercial) packages. Traditionally, these researchers would try

to get a copy of the package from an official library and implement it locally by surmounting the

difficulties of a new installation.

In the case of the SSC, instead, a validated version of the codes of interest will be provided already

implemented on the grid either for a black box usage or for a coordinated ussge within a work-

flow. Typical examples of this type of packages for the CMST field are GAUSSIAN (or equivalent

packages of ab initio calculations like GAMESS, MOLPRO, CASSCF, etc.) and/or quantum and

classical dynamics codes as ABC or RWAVEPR for the first type of codes or ABCtraj, VENUS or

even DL POLY (or equivalent packages for Molecular dynamics calculations for the second type of

codes). This effort is considered to be a big step forward along the line of making the SSC sustain-

able. This is to be understoood in two different ways. The first one is the possibility of collecting

revenues for the services provided. Although this aspect needs still to be fully investigated there are

already commercial companies operating in this way and developing tools for that. The second way

is to use web services as a menas for contributing to the activities of the SSC itself. In this respect,

in fact, the organization of internal activities allows to quantify the contributions provided by the
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members to the community as well as the services used in view of constructing a grid economy for

the community

3.5.3 The quality evaluation

An important element of the web service approach just described is that in order to build a

community it has to be accompanied by the development of Quality evaluation tools. This is indeed

a difficult task and will have to be addressed in different ways for different objectives. The first

and obvious objective is the service. The establishment of rules and tools to work out Quality of

Service (QoS) parameters will have to count on various aspects. The simplest ones are availability

(or time to response), accessibility, integrity, performance, reliability, regulatory and security. The

most difficult ones are innovation and research. In this case concepts like simplification of the

procedure, efficency, simplicity, savings in terms of times, costs, material, energy etc. need to be

exploited. Another type of quality to be quantified is that of members. Evaluation of members

will have to be implemented by measuring the quality of service (QoS) they are able to provide not

only to the other members but also to the users and third parties by using objective and subjective

parameters. This mans that also evaluation of users will have to be implemented by measuring

their quality (QoU) in using grid resources and in providing feedbacks and indications on how to

extend and improve the use of the grid. Once a reliable set of quality evaluation tools have been

established a means for rewarding members more committed to service the SSC will have to be

implemented. This can be achievede by constructing a grid economy through the award of credits

and the offer of approiate conditions to redeem them. This will be particularly difficult especially

for those immaterial services (like research) which are difficult to inscribe inside a metric. However,

the SSC will have to reward also those research efforts and investment in research which often do

not provide short term return. This may be used also to promote the achievements of social interest

and at large of more general interest. Credits will be redeemed through a better access to services,

research funding and other returns that the SSC will establish as congruent with its activities.
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Chapter 4

The N(4S) + N2 (1Σ+
g ) and N2 (1Σ+

g ) + N2

(1Σ+
g ) reactions

Questo capitolo è interamente dedicato ai risultati degli studi teorici effettuati sui due sistemi

presi in considerazione.

Nella sezione 4.1 vengono esaminate le informazioni teoriche sulla struttura elettronica del sistema

N + N2 e presentati i funzionali adoperati per lo studio teorico di questa reazione.

Nella sezione 4.2 sono mostrate le proprietà reattive del sistema atomo diatomo e analizzati i di-

versi risultati ottenuti quindi le principali PES utilizzate vengono analizzate e comparate.

Le sezioni 4.3 e 4.4 espongono, invece, le caratteristiche principali della reazione N2 + N2 e gli

studi teorici preliminari condotti su questo sistema.

• • •

As already mentioned, the reactions considered in my thesis work as a case study are

N(4S) + N2(
1Σ+

g , v, j)→ N2(
1Σ+

g , v′, j′) + N(4S). (4.1)

and

N2(
1Σ+

g ) + N2(
1Σ+

g )→ N2(
1Σ+

g ) + N2(
1Σ+

g ) (4.2)

The investigation of these reactions is useful from a theoretical point of view to assess the role

played by internal and traslational motions in promoting vibrational deexcitation when the reactive
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systems are not as light as H + H2 [111] or H2 + H2 [112]. The modeling of reactions 4.1 and 4.2

has been usually based upon the assumption that they have a purely classical behaviour and that the

conversion between translational and vibrational energy is the least effective step of the complex

mechanism leading to vibrational excitation of nitrogen molecules and, as a consequence, to its ion-

ization and dissociation [113].

However, the accurate evaluation of state-to-state cross sections and rate coefficients of these reac-

tions represents a highly demanding computational task even in classical approaches. They require,

in fact, the integration of extended sets of trajectory calculations for several initial states of the re-

actants and a converged sum with J of the related partial probabilities. As a matter of fact, massive

quasiclassical trajectory (QCT) calculations of the rate coefficients of the N + N2 reaction were car-

ried out in the past using parallel and distributed computing and related outcomes were compared

with those of a reduced dimensionality quantum infinite order sudden (RIOS) computational cam-

paign [114]. In that case the calculations were performed on an empirical PESs [115–117] and the

objective was to model nitrogen plasmas [118] and processes occurring around reentering space-

crafts [119]. QCT calculations for the N + N2 reaction were extended using the same PES to vibra-

tional relaxation and dissociation rates for the whole ladder of reactant vibrational states [120,121].

Calculations based on semiclassical initial value representation techniques were also performed to

evaluate thermal rate coefficients [122]. Improved PES of N + N2 were worked out using functional

forms based on a rotating model potential. QCT and quantum RIOS calculations performed on these

PESs singled out the different dynamical behaviour of the system on the various surfaces [123]. A

time dependent quantal study of this reaction using a PES derived from high level ab initio potential

energy values is reported in ref. [124]. As to the N2 + N2 system only some preliminary studies of

the intermolecular potential have been reported, as will be discussed later on in the second part of

this chapter.

4.1 The electronic structure of N + N2 and its Many Body representa-

tion

As already mentioned, the first electronic structure information on the 4A′′ (ground) global

PES for the N+N2 reaction was formulated empirically by the CDK group out of gas kinetics data.

To this end, a London-Eyring-Polanyi-Sato (LEPS) functional expression was used. The proposed

LEPS has a linear transition state of 1.55 eV [114].
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However, subsequent ab initio investigations performed by Petrongolo pointed out that the PES

provided a new description of the main features of the interaction of the N + N2 system, especially at

the saddle to reaction [125,126]. In particular, these ab initio calculations showed that the geometry

of the system at the saddle to reaction is bent and that the N̂NN angle has a value around 120◦ in

contrast with the collinear geometry associated with the saddle of the LEPS surface. This finding

motivated the assemblage of some new PESs(LAG0, LAG1, LAG2 and LAG3, sometimes called

also L0, L1, L2 and L3) [123] based on the so called largest angle generalization of the rotating

bond order (LAGROBO) functional [127–129].

Particular care has been put into the assemblage of the LAG3 PES to make it have a barrier

slightly lower than that of the LEPS and a bent geometry at the saddle (as indicated by Petrongolo).

This surface has been used for extended dynamical investigations. More recently, a new global PES

(WSHDSP) was fitted to 3326 ab initio values obtained from open shell CCSD(T)/aug-cc-pVTZ

calculations [130]. The WSHDSP PES exhibits a double barrier (i.e. two saddle points connected

by a shallow well), besides a transition state 0.49 eV higher than that of the LEPS. Unfortunately,

neither the WSHDSP PES nor the ab initio values to which it has been fitted are available for

distribution. For this reason, we repeated the ab initio calculations to which we assembled a new

LAGROBO potential energy surface called LAG4 (also called L4).

4.1.1 The many body expansion

For three atom and four atom systems the calculation of the potential energy values on a large

grid of nuclear positions (say at least 10 points per dimension) and their subsequent fit using a

suitable functional form is the most popular way of creating a PES. In fact, for reactive systems, ex-

tended regions of the molecular geometries become accessible during the collision and the accurate

determination of the related structures (these include intermediate wells, barriers, ridges as well as

long range and asymptotic reactant and product regions) is of vital importance ofr the evaluation

of scattering and kinetic properties. For this reason, sometimes, additional sets of points need to

be computed, in order to better define the most critical of them, like minimum energy paths and

saddles to reaction. As a result, this part of the procedure usually handles a fairly large amount of

ab initio values and is quite laborious since it includes also the incorporation of corrections into ab

initio points when they are found to be inadequate. Only after this phase, usually the (adjusted) ab

initio values are fitted using an appropriate functional form. The most popular of these functional

forms adopts the many-body expansion method (also known as Sorbie-Murrell method) that is a
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global method able, in principle, to fit potential energy surfaces for reactions involving any number

of atoms [131]. The expression of the many-body expansion for a three-atom system is given as a

sum of one-body, two-body and three-body terms:

V (rAB, rBC, rAC) = V (1)
A + V (1)

B + V (1)
C +

V (2)
AB (rAB) + V (2)

BC (rBC) + V (2)
AC (rAC) +

V (3)
ABC(rAB, rBC, rAC) (4.3)

The one-body terms, V (1)
A , V (1)

B and V (1)
C , are the electronic energies of the atoms in the dissociation

configurations. Since we normally deal only with electronic ground state potential energy surfaces

these terms are set equal to zero:

V (1)
A = 0; V (1)

B = 0; V (1)
C = 0 (4.4)

In the original approach followed by Sorbie and Murrell the interaction was expressed using inter-

nuclear distances. In our approach we make use of Bond Order (BO) variables n. The BO variable

for the ij atom is related to the internuclear distance rij as follows:

nij = exp [−βij(rij − req,ij)] (4.5)

In Eq. 4.5 βij is an empirical parameter and req,ij is the equilibrium distance for the ij diatom.

4.1.2 The two body terms

If the potential energy curve of a diatomic molecule is plotted against the related BO coordinate,

it has a parabolic shape (see Fig. 4.1, where the plot of a diatomic potential as a function of the

internuclear distance (left hand side panel) and as a function of the related BO coordinate (right

hand side panel) is given).

The figure singles out some peculiar properties of the BO formulation of the diatomic interaction:

• the minimum of a diatomic curve plotted against the BO is always at n = 1 (rij = req,ij), as

shown also in Fig. 4.2 for the reactant and product fragments of H + ICl system;

• in physical coordinate plots the dissociation limit (A + B) (rij → ∞) lies outside the graph

and the repulsive region is located at short distance. On the contrary, in BO coordinates the

dissociation limit is located at the coordinate origin and the repulsive potential is at large

(though finite) values of nij .

VIRT&L-COMM.9.2016.3

ISSN: 2279-8773



The N(4S) + N2 (1Σ+
g ) and N2 (1Σ+

g ) + N2 (1Σ+
g ) reactions 97

0 1 2 3 4 5
 r

0

0,25

    
    

V 
/ a

.u
0 1 2 3 4

n

0

0,25

Figure 4.1: Comparison of diatomic potential represented as a function of the internuclear distance

r (left hand side panel) and as a function of the corresponding BO coordinate n (right hand side

panel)

These considerations evidence the advantages of using BO coordinates for modeling potential en-

ergy functions: the zero asymptotic limit is naturally built into the BO representation of the potential,

the finiteness of the space makes it easier to build grids, minimum energy paths (MEPs) are more

easy to locate.

When using BO coordinates, the two-body terms can be therefore expressed as follows [132]:

V (2)
ij (nij) = Dij

N
∑

k=0

a(k)
ij nk

ij ij = AB,BC,AC

(4.6)

where Dij is the dissociation energy of the ij diatom, while the a(k)
ij are the expansion coefficients,

with no need for using damping factors to kill the increasing trend at long range. These coeffi-

cients, jointly with the βij parameter of Eq. 4.5, are chosen so as to minimize the rms deviation

of the fitted values from the input points (i.e. the ab initio values). It is obvious that, when the

expansion of Eq. 4.6 is truncated to k = 2, the BO potential has the form of the usual Morse po-

tential. In this case b can be identified as the Morse β parameter and a1 and a2 respectively with 2

and−1. Accordingly, when βij can be related to the force constant of the diatom by the relationship:

βij = ωe,ij

√

πµij

Dij
(4.7)

where ωe,ij is the harmonic vibrational constant of and µij the reduced mass of the considered di-

atom. When higher terms are included the parameters of the BO functional loose their k=2 physical

meaning of the corresponding Morse potential. If expansion 4.6 is truncated to the fourth power,
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Figure 4.2: Diatomic (asymptotic) curves plotted against the related BO variables for the HICl

system.

a relationship between the BO coefficients and the force constants can still be established. The

method (often called FCBO) equates the derivatives of the potential at the minimum to the related

force constants deducted from spectroscopic data. This leads to the following system of equations

(for simplicity we dropped the indices ij):

c1 =
1

6
(G3/β

3) +
3

2
(G2/β

2) + 4 (4.8)

c2 = −
1

2
(G3/β

3)− 4(G2/β
2)− 6

c3 =
1

2
(G3/β

3) +
7

2
(G2/β

2) + 4

c4 = −
1

6
(G3/β

3)− (G2/β
2)− 1

0 = G4 + 10G3β + 32G2β
2 + 24β4

where Gk = −Fk/De with Fk being the k-th force constant of the diatom ij. The fifth equation is

numerically solved in order to work out the β parameter. In general, such an equation, has only one

positive solution. In the few cases when more than one positive solution are available the largest

one, in better agreement with extrapolation from solutions obtained by second and third power

truncation of the expansion, is adopted. A similar (though slightly more complex) set of equations

can be obtained when k=6 or larger. Eventually, additional constraints like the reproduction of some

components (or the overall) of the long range interaction is enforced. Therefore, in the case in which

the expansion procedure does not lead to satisfactory results and a sufficient number of asymptotic
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potential energy values are available (possibly adjusted to reproduce the dissociation energy and the

equilibrium position) this alternative procedure is to be preferred.

4.1.3 The three body term

After working out the diatomic terms the values of the three body energies are obtained by

subtracting the two body components from the whole set of ab initio values (after having adjusted

the ab initio values to reproduce the main features of the reaction channel, including spectroscopic

and reactivity properties).

Then the three body values are fitted using a polynomial of order M in the relevant three BO vari-

ables:

V (3)
ABC(nAB, nBC, nAC) =

M
∑

l=0

M
∑

m=0

M
∑

n=0

clmnnl
ABnm

BCnn
AC (4.9)

l + m + n ≤M,

l + m + n ̸= k ̸= m ̸= n

in which all single variable terms are excluded. It is worth noting that the values of the β parameters

are still the ones estimated for the diatomic potentials. This fact implies that the surface has the cor-

rect asymptotes and that the spurious features that can arise in the long range region when different

functional forms are used for diatomic and three body interaction terms do not occur. Moreover, in

this formulation the damping function, normally used in the many-body expansion to make sure that

the three body term becomes zero at asymptotic configurations (i.e. when any of the internuclear

distances becomes large), is not needed because the three-body term is zero when either nAB or

nBC or nAC is zero (i. e. at atom+diatom and at full dissociation configurations). The optimization

of the clmn coefficients is performed using a linear regression.

An example of an atom diatom potential energy surface represented using the BO coordinates, the

isoenergetic contours of the collinear H + H2 reaction are shown in Fig. 4.3.
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Figure 4.3: Sketch of the BO isoenergetic contours for the H + H2 system.

4.2 From Many Body to Many Process LAGROBO representations

When dealing with three or more atoms the polynomial representation of all the components

of the interaction may find valid alternatives. In fact, though in a polynomial representation the

determination of the coefficients is straightforward the result may be affected by the fact that no a

priori chemical knowledge has been built-in into the functional representation.

4.2.1 From LEPS to ROBO

A typical example of a more “chemically oriented” formulation of the atom diatom PES is

indeed the LEPS potential. The LEPS potential has been derived from an extremely simplified ab

initio approach. As shown in the followings the LEPS functional (V LEPS) can also be formulated

using a many-body expansion scheme [134] and be written as:

V LEPS(rij , rjk, rik) = V (2B−LEPS) + V (3B−LEPS) (4.10)

where i, j and k label the atoms of the system. The two body terms of the functional read:

V (2B−LEPS) =
∑

l

1El(rl) (4.11)

with l being the sequential label for the ij, jk and ik diatomic pairs and 1El(rl) being the Morse

diatomic potential defined as

1El(rl) = Dl

(

e−2βl(rl−rel) − 2e−βl(rl−rel)
)

(4.12)
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The three body term reads:

V (3B−LEPS) = −
∑

l

Jl −
√

1

2

∑

l

∑

m>l

(Jl − Jm)2 (4.13)

with

2Jl = 1El(rl)−
1−∆l

1 + ∆l

3El(rl) (4.14)

and
3El(rl) =

Dl

2

(

e−2βl(rl−rel) + 2e−βl(rl−rel)
)

(4.15)

in which 3El(rl) is the anti-Morse diatomic potential, ∆l is the lth empirical (Sato) parameter and

Dl, βl and rel are, respectively, the dissociation energy, the force constant and the equilibrium

distance of the diatom l. The Morse (eq. 4.12) and anti-Morse (eq. 4.15) parameters come from

the spectroscopic data of the (X1Σ+
g ) electronic ground state of the N2 molecule [135]. They are:

internuclear equilibrium distance re = 1.0977 Å; dissociation energy De = 9.905 eV; harmonic

and anarmonic vibrational constants ωe = 2358.57 cm−1 (0.292 eV) and ωexe = 14.324 cm−1

(0.00178 eV). Using these data, one can easily calculate the value of β [79], that for N2 turns out

to be β = 2.689 Å−1 . Since N+N2 reaction is homonuclear, all the Sato parameters will have the

same value. To determine this value, it was assumed on the ground of measured rate coefficients

that the barrier to reaction was 1.55 eV. This led to a value of −0.023 [114]. The features of the

plots of figures 4.1,4.2and 4.3 drawn in the BO space naturally have suggests the use of the polar or

hyperspherical BO coordinates (HYBO). The BO coordinates can be transformed into the HYBO

ones as follows:

ρj =
(

n2
ij + n2

jk

)1/2 (4.16)

αj = arctan

(

nij

njk

)

(4.17)

for collinear systems.

The ρj and αj coordinates are perpendicular in the BO space [136,137]. The intervals of definition

of these coordinates are:

0 ≤ ρj ≤ [exp (2βijreqij) + exp (2βjkreqjk)]
1/2

0 ≤ αj ≤ π/2

A plot of the isoenergetic contours of the HICl potential and a sketch of the HYBO coordinates are

given in Fig. 4.4. These plots of H + H2 (see Fig. 4.3) and that of H + HICl (see Fig. 4.4) show
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Figure 4.4: Plot of the isoenergetic contours for the HICl PES represented as a function of the nICl

and nHCl. Also the polar coordinates ρ and α are indicated.

that the reaction channel can be described by a BO diatomic like functional rotating (from this the

acronym ROBO) of π/2. As shown from Fig. 4.4, the ρj coordinate corresponds to the vibrational

coordinate of the system (changing from the reactant diatom to the product one) and the αj coor-

dinate corresponds to the reaction coordinate. This means that using the HYBO coordinates it is

possible to describe the potential energy surface for a single process, say A + BC → AB + C , by

using a pseudo diatomic function like:

V ROBO
B (ρB,αB;φB) = DB (αB;φB)FB (ρB;αB,φB) (4.18)

where φB is the angle ÂBC. The function DB (αB;φB) gives the fixed φB evolution of the minimum

energy path along αB when the system evolves from the reactant to the product configuration. The

polynomial FB (ρB;αB,φB) represents the cut (normalized to −1 at the minimum) of the fixed φB

potential energy surface along ρB at a given value of αB.

Therefore, when α is zero and π/2, for example, the ROBO potential coincides with the asymptotic

diatomic potential of the reactants and products, respectively, as shown in Fig. 4.3. However, even

for other values of α (including that of the saddle) the cuts of the potential along ρ are properly

described by a parabola (a Morse-like shape in physical coordinates).
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Figure 4.5: Cuts of the potential for the HICl system at three values of α (5.7◦, 45◦ and 85◦).

4.2.2 The LAGROBO functional and the Many Process Expansion

When dealing with a non fully symmetric reaction each channel will represent a different pro-

cess. Accordingly, more than a single V ROBO
L function (where L can be A, B or C according to the

chosen exchanged atom) have to be used to describe the whole process and a proper combination of

ROBO functionals has to be taken.

This means that instead of an MBE (Many Body Expansion) we are using here an MPE (Many Pro-

cess Expansion) model. In this model, the global potential energy surface function for a N -atoms

system is expressed as a sum of the potential functions describing all the relevant atomic rearrange-

ment processes 1 of the system. The general expression of this potential is:

VABC...N =
∑

ξ

wξ({sξ} · s1 · s2 · · · )Pξ({tξ} · t1 · t2 · · · ) (4.19)

where {sξ} and {tξ} are the reaction coordinate and the pseudo diatomic coordinates related to

the process transforming the reactant configuration into the product one, while s1, s2 . . . sl and

t1, t2 . . . tl are the remaining N − 1 coordinates. Pξ({tξ}) represents the potential function of the

process ξ and wξ({sξ}) is the related weight factor evaluating the relative importance of process ξ.

1We define atomic rearrangement process any reactive process taking place with the breaking of a bond in the molecule

and the formation of a new one.
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For a three atom reaction, one has the following rearrangement channels:

Process 1 A + CB ! AC + B

Process 2 B + AC ! BA + C (4.20)

Process 3 A + BC ! AB + C

Then, one considers for each process the two BO coordinates involved in the atom exchange and the

angle formed by the related internuclear distances (i.e. for process 3, these are nAB, nBC and φB

coordinates) and works out the corresponding polar representation by generating the angular coor-

dinates αB , αC , αA and the hyperradii ρB , ρC and ρA, together with the related V ROBO
ξ potential.

Once the three ROBO potentials of the MPE have been built, the overall potential energy surface is

obtained by the following linear combination:

V (rAB, rBC, rCA) = wA (φA)V ROBO
A (ρA,αA;φA)

+ wB (φB) V ROBO
B (ρB,αB;φB)

+ wC (φC) V ROBO
C (ρC,αC;φC) (4.21)

The weighing functions, wA, wB , wC give the importance to the contribution of a given ROBO term

to the overall potential.

A suitable formulation of the weight coefficients is the one that privileges the ROBO potential as-

sociated with the process taking place with the largest φ value. This is in fact, the MPE term better

describing the current geometrical configuration since, being the internuclear distance rAC of the

two opposite atoms large and the associated interaction small, the related fixed angle BO repre-

sentation is the less perturbed one and therefore the one closer to circular contour representations.

Therefore, simple functions of the angles φA, φB and φC , privileging the contribution of the most

collinear geometry, can be used to build an overall switching function indicating the relative impor-

tance of the different contributions to the system interaction. When one φ decreases then another

angle may become prevalent (obviously, this coincides with a change in the reference geometry of

the system). Accordingly, the expansion coefficients should vary so as to weigh more the potential

associated with the new largest angle. Therefore, a suitable generalized MPE functional reads

V (rAB, rBC , rAC) =

∑

L=A,B,C ωL(φL)V ROBO
L (ρL,αL;φL)

∑

L=A,B,C ωL(φL)
(4.22)

where the individual weighing functions ωL are given by:

ωL(φL) =
uL(φL)

∑A,B,C
S uS(φS)

. (4.23)
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In Eq. 4.23 uL(φL) is a damping function defined as follows:

uL(φL) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 if φL < φ0
L −∆φL

1
2

(

1 + sin
(

π(φL−φ0
L)

2∆φL

))

if φ0
L −∆φL ≤ φL ≤ φ0

L + ∆φL

1 if φ0
L + ∆φL < φL

if a sinusoidal switching function is chosen (in some cases a hyperbolic tangent function was cho-

sen). This choice of uL guarantees that for φL values greater than φ0
L + ∆φL the weighing function

it exactly one, for φL values smaller than φ0
L − ∆φL it is exactly zero and for values ranging in

the interval of width 2∆φL around φL it smoothly varies from zero to one. For this reason this

approach was called Largest Angle Generalization of ROBO (LAGROBO). Following eq. 4.18, for

the generic process L, V ROBO
L is expressed by the product of DL and FL functions. Usually, for

FL a second degree polynomial in ρL, i.e. a Morse-like formulation, is adopted. Accordingly, for

arrangement B one has:

FB(ρB ;αB ,φB) =
ρ2

B

ρ2
0B(αB ,φB)

− 2
ρB

ρ0B(αB ,φB)
(4.24)

with ρ0B(αB ,φB) being the value of ρB at the minimum that depends on αB and (parametrically)

on φB .

One advantage of the LAGROBO method is that the determination of best fit parameters can be

carried out in a fast and straightforward manner using least square fits. This approach has been

successfully used to work out some potential energy surfaces for three atom reactions (such as

H + H2 [137], O + HCl [138]). The values DL and ρ0L at the asymptotes (αL = 0◦ and 90◦

respectively) were chosen to reproduce the dissociation energy, the equilibrium internuclear distance

and the exponential factor of the N2 Morse diatomic potential. In order to keep the formulation of

the potential as simple as possible and to enforce the proper symmetry, DL and ρ0L were given a

linear dependence on the sin(αL):

DL(αL,φL) = −De + bL1(φL) sin(2αL) (4.25)

ρ0L(αL,φL) = 1 + bL2(φL) sin(2αL) (4.26)

The variation of the bL1(φL) and the bL2(φL) coefficients with φL was formulated as:

bLj =
kmax
∑

k=1

cLjk(φ
TS
Lj − φL)ζ (4.27)

where φTS
Lj is an angle of reference, usually the angle at the saddle geometry.

An advantage of the LAGROBO method is that the determination of best fit parameters can be

carried out in a fast and straightforward manner using least square fits. This approach has been
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successfully used to work out some potential energy surfaces for three atom reactions (such as

H + H2 [137], O + HCl [138]).

4.2.3 The characteristics of the various N + N2 LAGROBO PESs

The flexibility of the LAGROBO functional form allowed us to generate several LAGROBO

PESs, called, as already mentioned, L0, L1, L2 and L3. The L0 LAGROBO PES was obtained by

fitting the existing LEPS. In this case, see eq. 4.27, both φTS
L1 and φTS

L2 are 180◦, ζ is 2(k − 1) and

kmax is 4. To modify the height and the location of the transition state of the LAGROBO PESs, one

can play with the analytic formulation of the bLj coefficients of eq. 4.27 and with the value of the

related cLjk and φTS
Lj parameters. In fact, for the L1, L2 and L3 LAGROBO potentials the exponent

ζ was set equal to k − 1 for bL1 and equal to 2(k − 1) for bL2 (except for that of L2 for which the

value k − 1 was taken). At the same time, φTS
Lj was set equal to 120◦ for L1 and L2 and equal to

125◦ for L3. The value of φTS
L2 was always set equal to 180◦. In all cases, kmax was set at 4. The

cL11 coefficient, which indicates the height of the saddle, was set to have the same height of the

transition state as the LEPS in the L1 and L2 surfaces whereas in the L3 one was chosen so as to

make the height of the transition state better agree with the indications of ab initio calculations of

refs. [125, 126]. The value of the parameters for all the LAGROBO PESs are given in ref. [123].

The heights and bond lengths of the barriers to reaction for several internuclear angles φ are given in

Table 4.1. As clearly indicated by the Table, both the height and the geometry of L0 well reproduce

those of the LEPS. The most significant difference, not apparent from the Table, is the slope of the

MEP of L0, which is larger than that of the MEP of the LEPS (the MEP of L0 lies always slightly

above that of the LEPS). The L1 and L3 PESs have a bent transition state. The location of the

transition state is the key difference between the LEPS (L0) and the L1 surface. In fact, while the

height of the transition state is the same (1.55 eV) for both surfaces, the location of the LEPS and

L0 transition state is collinear while that of L1 is bent (φ = 120◦). At the same time, the transition

state of L3 differs from that of L1 for the fact that it is high 1.40 eV and located at φ = 125◦.

The dependence of the barrier height on the internuclear angle φ is shown for the LEPS, L1 and

L3 surfaces in Figure 4.6 (the corresponding dependence for the L0 PES is not shown because it

coincides with that of the LEPS PES). On the other hand, all PESs have almost the same dependence

on the angle φ of the N-N internuclear distance at the barriers. However, beside this agreement, the

N-N distance at the transition state differs.

In order to analyse the global characteristics of the PES and find, if it exists, any spurious
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Table 4.1: Barrier characteristics of the N+N2 PESs
Height (in eV) N–N distance (in Å)

φ LEPS L0 L1 L3 LEPS L0 L1 L3
180◦ 1.55 1.55 3.49 3.49 1.240 1.240 1.240 1.240
150◦ 1.61 1.62 1.93 1.79 1.243 1.244 1.244 1.244
125◦ 1.83 1.84 1.56 1.40 1.251 1.252 1.252 1.252
120◦ 1.92 1.91 1.55 1.42 1.254 1.254 1.254 1.254
90◦ 3.06 3.05 2.45 2.65 1.294 1.293 1.293 1.293
60◦ 7.69 7.69 7.69 7.69 1.530 1.522 1.522 1.522
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Figure 4.6: Barrier heights as a function of the angle φ for the LEPS, L1 and L3 PESs.
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Figure 4.7: Isoenergetic contour maps for LEPS (left panels) and L3 (right panels) PESs for φ = 180◦

(upper panels) and φ = 125◦ (lower panels). The energy interval between two consecutive contours is 0.4 eV
and the energy is referred to the entrance channel.

structure, it is necessary to plot the potential energy function. Obviously, a full four-dimensional plot

of the PES is not possible. To reduce the dimensionality, the projection of the potential function onto

a bidimensional space is needed. Generally this difficult is overtaken by resorting to the isoenergetic

contour maps of the potential function [141]. In each plot, usually the internuclear angle φ is fixed

and the isoenergetic contours are obtained as a function of the r1 and r2 internuclear distances.

Figure 4.7 shows these plots for the LEPS and the L3 PESs. The L0 and L1 contour plots have

been omitted because they are almost equal to those of the LEPS and L3 ones, respectively. In the

plots, the entrance channel is localized in the lower-right part of each panel and is extended up to

(r1 → ∞) asymptotic limit where one atom is far away from the diatomic molecule and therefore
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the potential energy corresponds to the N2 diatomic potential. Reaction starts channel moving to

the left direction to reach the saddle point. After the saddle, the reactive process progresses towards

the products to reach the product asymptotic region (r2 →∞) located in the upper-left side of each

panel. Obviously, the isoenergetic maps at a given φ angle are symmetric, since the N + N2 → N2

+ N process is symmetric. The properties of the reaction channel of L4 is compared with those of

LEPS and L3 PESs table 4.2. In particular, the geometry and the energy of the system at the barriers

and at the bottom of the LAG4 well are reported. Note that the geometry of the system at the L4

barrier is asymmetric. The geometry at the bottom of the well is symmetric with r1 = r2 = 2.40

bohr and E = 1.93 eV. Accordingly, the depth of the well is 0.13 eV. The minimum energy paths

are shown in figs. 4.8 and 4.9. For illustrative purposes we show the potential energy surface at

fixed angles (t.s. angles for LEPS and L3, bottom-of-the-well angle for L4, see table 4.2) for the

three PESs as a function of two internuclear distances in figs. 4.10, 4.11, 4.12.

LEPS t.s. L3 PES t.s. L4 PES t.s. L4 PES well
r1 = 2.34 bohr r1 = 2.37 bohr r1 = 2.24 bohr r1 = 2.40 bohr
r2 = 2.34 bohr r2 = 2.37 bohr r2 = 2.76 bohr r2 = 2.40 bohr

φ = 180.0 degrees φ = 125.0 degrees φ = 116.8 degrees φ = 118.6 degrees
Ets = 1.55 eV Ets = 1.40 eV Ets = 2.06 eV Ewell = 1.93 eV

Table 4.2: Features of the reaction channel of the LEPS, L3, L4 PESs.
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Figure 4.8: Minimum energy reaction path for the LEPS, LAG3, LAG4 PESs as a function of two

internuclear distances with variable angle (see fig. 4.9). Asymptotic regions of the various channels

are also shown.
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Figure 4.9: Minimum energy path connecting the exchange point to the asymptotic channel for the

LEPS, LAG3, LAG4 PESs plotted as a function of one internuclear distance. The remaining two

coordinates are variable.
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Figure 4.10: LEPS potential energy surface plotted as a function of two internuclear distances at a

fixed angle of 180.0 degrees.
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LAGROBO3 PES, φ=125.0o
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Figure 4.11: LAG3 potential energy surface plotted as a function of two internuclear distances at a

fixed angle of 125.0 degrees.
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LAGROBO4 PES, φ=118.6o
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Figure 4.12: LAG4 potential energy surface plotted as a function of two internuclear distances at a

fixed angle of 118.6 degrees.
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4.3 The reactive properties of N + N2

To compare the reactive efficiency of the system on the considered PESs, exact J=0 state-to-

state quantum reactive probabilities (excitation functions) were calculated for the ground rotational

level of the first 6 vibrational states of the reactant N2 molecule and Etr ranging from threshold up

to 2 eV in steps of 0.001 eV by Garcia et al. [142].

4.3.1 From LEPS to LAGROBO PESs results

A first batch of calculations were performed on the LEPS and on the L0 PESs. Plots of the

reactive probability values calculated at J=j=0 and v varying from 0 to 5 are given in Figure 4.13 as

blue and magenta lines, respectively. The 3D quantum probabilities, although differing in absolute

value from QCT and RIOS ones, confirm that, as expected, results obtained on LEPS and L0 are

almost coincident. When calculations were performed also on L1 (to the end of investigating the

effect of moving the barrier to reaction out of collinear geometries while preserving its height), the

net result (see green lines of Figure 4.13) was at v=0 a clear increase of the threshold energy and an

associated strong decrease of the reactive probability about the threshold region (in the temperature

range of interest, this means also a substantial decrease of the thermal rate coefficient). When

the calculations were extended to L3 (to the end of investigating the effect of lowering the saddle to

reaction in an attempt to contrast the decrease of the reactivity due to the adoption of a bent geometry

at the saddle) the net result (see red lines of Figure 4.13) was a lowering of the threshold energy

back almost entirely to the LEPS and L0 values and a sharp increase of the reactive probability

in the energy region immediately following the threshold. This puts on an exact quantum ground

the traditional QCT finding that on collinearly dominant PESs relative collision energy is exploited

better than any other mode to the end of enhancing reactivity. Such an effect is particularly strong,

however, only at v=0 and for the just-past-the-threshold energy values. At larger v values, in fact,

the picture is partially modified. The higher reactive efficiency of the collinearly dominated PESs

(LEPS and L0) becomes weaker and the interplay between larger amounts of vibration and collision

energy becomes so strong to efficiently enhance the reactivity also on PESs having a bent geometry

at the saddle to reaction provided that the height of the barrier has been lowered as in L3. As

shown by the green lines of Figure 4.13, in fact, L1 results (for which the barrier has not been

lowered) remain lower than the reactive probabilities calculated on the other surfaces for a larger

interval of relative collision energy even at v=5. A first consideration to make at this point is that
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Figure 4.13: State-specific reactive probabilities, P J
vj(Etr), calculated on the LEPS (blue line), L0 (magenta

line), L1 (green line) and L3 (red line) PESs for v=0,1,2,3,4,5 at j=J=0 plotted as a function of the collision
energy Etr.
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the LAGROBO PESs which have a bent transition state geometry (such as L1 and L3) are able to

emulate the reactive efficiency of the collinearly dominant PESs (such as the LEPS and L0) only

when the barrier to reaction is properly lowered (in our case, as already mentioned, this amount

corresponds to the zero point difference between the transition state and the asymptote).

4.3.2 L3 Vs LEPS

To consider other properties of the N + N2 reactive system, we shall focus hereafter on the

comparison between LEPS and L3 results. As discussed in the previous section, the key differences

between the LEPS and L3 PESs are the height of the saddle to reaction and the geometry of the

system associated with it. In particular, while the lowest saddle to reaction of the LEPS has an

energy of 1.55 eV (36 Kcal/mol) and a value of the angle φN2 (the angle formed by the bonds of

the external nitrogen atoms N1 and N3 with the central one) of 180.0◦ (collinear geometry), the L3

has an energy of 1.40 eV and a value of the angle φN2 of 125.0◦. At the same time, however, they

have a single barrier along the minimum energy path, and the length of the N1N2 and N2N3 bonds

at the barrier is the same. To emphatize this difference we show different calculation from [143]

performed at total angular momentum J=0 for a range of 153 total energies (from 1.2 eV, some

tenths of eV below the barrier, up to 3.1 eV, about two times the barrier, with an energy step of

0.0125 eV). The maximum internal energy in any channel has been set to 3.5 eV.

Exact J = 0 state specific quantum reactive probabilities were extracted from the scattering matrix

for the first 7 ground-vibrational states of the reactant N2 molecule. Related plots as a function

of the total energy are shown in figs. 4.14-4.20 (to derive similar information for Etr one can use

the information of table 4.3). At higher vibrational states (v =1, 2, 3, 4, 5 and 6) this picture is

v ELEPS
int (eV) EL3

int (eV)

0 0.14566 0.14565
1 0.43375 0.43371
2 0.71752 0.71746
3 0.99697 0.99689
4 1.27210 1.27200
5 1.54293 1.54280
6 1.80943 1.80928

Table 4.3: Energies of the first 7 ground-vibrational states of N2 for the LEPS PES (lhs column) and

the L3 PES (rhs column).
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confirmed (figs. 4.15-4.20). The calculations show, in fact, that the reactive efficiency of the LEPS

is, in general, larger than that of the L3 PES only for a short just-past-the threshold interval of

energy. On the contrary, after that interval the combination of a larger amount of both vibration and

collision energy is effective in enhancing the L3 reactivity to the point of making it larger than the

one calculated on the LEPS. This puts again on an accurate quantum ground the other traditional

QCT finding that to the end of enhancing reactivity PESs having a bent transition state better exploit

vibrational energy than those having a collinear transition state.
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Figure 4.14: State specific reactive probabilities for v = 0 at j = J = 0 calculated on the LEPS

(solid line) and the LAG3 (dashed line) PESs and plotted as a function of the total energy.
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Figure 4.15: State specific reactive probabilities for v = 1 at j = J = 0 calculated on the LEPS

(solid line) and the LAG3 (dashed line) PESs and plotted as a function of the total energy.
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Figure 4.16: State specific reactive probabilities for v = 2 at j = J = 0 calculated on the LEPS

(solid line) and the LAG3 (dashed line) PESs and plotted as a function of the total energy.
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Figure 4.17: State specific reactive probabilities for v = 3 at j = J = 0 calculated on the LEPS

(solid line) and the LAG3 (dashed line) PESs and plotted as a function of the total energy.
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Figure 4.18: State specific reactive probabilities for v = 4 at j = J = 0 calculated on the LEPS

(solid line) and the LAG3 (dashed line) PESs and plotted as a function of the total energy.
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Figure 4.19: State specific reactive probabilities for v = 5 at j = J = 0 calculated on the LEPS

(solid line) and the LAG3 (dashed line) PESs and plotted as a function of the total energy.
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Figure 4.20: State specific reactive probabilities for v = 6 at j = J = 0 calculated on the LEPS

(solid line) and the LAG3 (dashed line) PESs and plotted as a function of the total energy.

VIRT&L-COMM.9.2016.3

ISSN: 2279-8773



The N(4S) + N2 (1Σ+
g ) and N2 (1Σ+

g ) + N2 (1Σ+
g ) reactions 123

Interesting information about the dynamical behavior of the N + N2 system on the two potential

energy surfaces considered here is also obtained by varying the rotational excitation of the reactant

molecule. State specific reactive probabilities calculated for several rotational states at v = J = 0

on the LEPS PES are shown in figures 4.21 and 4.22, on the L3 PES in figures 4.23 and 4.24 as a

function of translational energy. As is apparent from the figure the threshold moves to lower relative

collision energies as j increases with this effect being definitely more pronounced for the values

calculated on the L3 PES. This shows that the already commented poor exploitation of the relative

collision energy near the threshold to enhance reactivity on L3 at v = 0 is largely compensated by

an efficient exploitation of the rotational energy of the target in contrast with what happens on the

LEPS PES. The lowering of the threshold with j is also accompanied by a simultaneous increase

of the reactive probability on L3. Such an increase is dramatic at low j values on L3 while no such

effect is found on the LEPS PES. This is, indeed, a distinctive feature of the L3 PES. The L3 PES,

in fact, effectively leverages on the extra rotational energy of the low excited rotational states of the

reactants to fill the reactivity gap associated with an inefficient use of Etr at j = 0 and overtake the

saddle.
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Figure 4.21: State specific reactive probabilities for j = 0, 1, 2, 3, 4 at v = J = 0 calculated on the

LEPS PES and plotted as a function of the translational energy.
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Figure 4.22: State specific reactive probabilities for j = 6, 8, 10, 12, 14 at v = J = 0 calculated on

the LEPS PES and plotted as a function of the translational energy.
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Figure 4.23: State specific reactive probabilities for j = 0, 1, 2, 3, 4 at v = J = 0 calculated on the

LAG3 PES and plotted as a function of the translational energy.
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Figure 4.24: State specific reactive probabilities for j = 6, 8, 10, 12, 14 at v = J = 0 calculated on

the LAG3 PES and plotted as a function of the translational energy.
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4.3.3 The new LAGROBO PES L4 and related results

The L4 PES for the N + N2 exchange reaction is based on the fitting of ab initio calculations

carried out using an open shell CCSD(T)/aug-cc-pVTZ method, as implemented in the MOLPRO

code [144]. Three sets of calculations have been performed.

The first set of calculations has been carried out to obtain a good description of the transition

state. Unconstrained geometry optimization and harmonic frequency analysis have been performed

to confirm the existence of a double barrier connected by a shallow well. Geometries (two bond

distances, r1 and r2, and the bond angle between them, φ) and energies obtained for both the

transition states and the shallow well are shown in Table 4.4. The obtained values agree with the

ones obtained in ref. [130]. Aim of the second type of ab initio calculations has been the description

of the dependence on the bond angle Φ of both the geometry and the energy of the well placed

between the double barrier structure. In the calculations the bond angle Φ has been fixed and then

a geometry optimization (with r1=r2) has been carried out. The explored range of angles varied

from 180◦ to 85◦ (φN2 = 116.8◦). Figures 4.25 and 4.26 show the dependence on Φ of the energy

and of the location on ρ (ρ is the BO coordinate defined in eq. 4.16 as ρ =
√

n2
1 + n2

2 where

ni = exp[−β(ri − rei)] while the other polar BO coordinate is defined as α = arctan(n2/n1)) of

the well obtained in the ab initio calculations. The minimum of the energy is located at Φ=118.6◦.

The harmonic frequency analysis confirms that the optimized geometry is a well (a minimum) for

Φ ranging form 150◦ to 90◦. Outside this range the optimized configuration corresponds to a saddle

and, therefore, there is a single barrier between reactants and products.

Aim of the third set of ab initio calculations is the characterization of the MEPs at several bond

angles Φ. In the calculations, the angle Φ and one of the internuclear distances have been fixed and

then an optimization of the other internuclear distance has been carried out in order to minimize the

energy. Figure 4.27 shows the energy profile of the fixed Φ MEPs as a function of the BO polar

angular coordinate α (defined in eq. 4.17) from the reactants (α=0◦) to products (α=90◦). Note that

the values at α=45◦, where the two BO coordinates are equal, n1=n2 (or equivalently to r1=r2), are

Table 4.4: Geometry and energy (relative to reactants) for the well and the two transition states.
r1 /Å r2 /Å Φ ∆E /eV

Well 1.268 1.268 118.6◦ 1.93
Transition state A 1.174 1.505 116.5◦ 2.04
Transition state B 1.505 1.174 116.5◦ 2.04
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Figure 4.25: Ab initio optimized energy (relative to reactants) at the system geometry r1=r2 plotted as a
function of the bond angle Φ.
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Figure 4.26: Value of ρ at the ab initio optimized system geometry r1=r2 plotted as a function of the bond
angle Φ.
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those plotted in Figure 4.25. As shown by the Figure, the double barrier structure (and the associated

well) disappear at Φ=180◦. On the other hand, Figure 4.28 shows the location on ρ of the fixed Φ

MEPs as a function of α. In this case, a double peak also appears for several angles Φ.

This study brings to a functional form with a bent transition state and an energy of about 2

eV sandwiched by two barriers (associated with an asymmetric N1N2N3 geometry, that is rN1N2 ̸=

rN2N3) symmetrically displaced in the entrance and exit channels.

Exact J = j = 0 state specific quantum reactive probabilities were built out of the scattering

matrix for the first 10 vibrational states of the reactant N2 molecule. The curves of the first 6

vibrational levels are plotted as a function of the reduced2 total energy in figs. 4.29-4.34 (the internal

energies of the considered levels are the same as those in the column L3 of table 4.3 at p. 117).

Except for the position in the energy scale (for this reason the reduced total energy was adopted for

the abscissa), the curves show clear similarities with those calculated on the L3 PES.

As to the differences (apart from the obvious larger threshold energy) L4 shows a clear regular

oscillatory structure in the v = 0, j = 0 plot of fig 4.29. These oscillations (as shown from fig. 4.37,

as we shall discuss later) are mainly associated with the transitions from the ground reactant state to

the lowest product vibrational states. In fact, not only the (v = 0, j = 0)→ (v′ = 0, all j) transition

probability shows the regular structure but also those to larger v′ values despite their lower intensity.

The distance between two neighbour peaks (about 0.075 eV) is a clear fingerprint of its origin. In

fact, such a spacing corresponds to the spacing of the quasibound states supported by the well. A

detailed study carried out by the authors of refs. [145, 146] on their WSHDSP surface has shown

that the (v = 0, j = 0) state specific probabilities curve present resonances at total energies that

correspond with the energy of quasibound bending modes supported by the potential well in the

“Eyring Lake” region. The spacing between such bending modes in the WSHDSP PES (which is

very similar to L4) is about 0.075 eV. Some shoulders are also observed at energies that correspond

to combined bending and stretching modes. Such shoulders are clearly visible in fig. 4.37 of our

calculation too. The dominance of bending resonances, however, is not surprising. The bond angles

of the well minimum and of the barrier are very close, despite the bond distances are different.

Stretching motions take the wavefunctions out of the exchange region into final products, whereas

bending motions are more likely to keep the wavefunctions in the Eyring Lake region, resulting in

a longer lifetime.

2The reduced total energy is obtained by dividing total energy by the energy of the barrier to reaction.
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Figure 4.27: Ab initio energy (relative to reactants) of the fixed Φ MEPs plotted as a function of the BO
polar coordinate α.
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Figure 4.28: Ab initio location on ρ of the fixed Φ MEPs plotted as a function of the BO polar coordinate α.
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It is important, however, to point out that a similar (though less clear) effect was found in

state specific probabilities calculated on L3. In L3 probabilities (see fig. 4.29), in fact, there are

three peaks which correspond to a great extent to three maxima of the L4 curve. Such an effect

can only be due to dynamical trapping that is the trapping in the saddle well. The most important

consequence of the trapping is a strong deexcitation effect. The deexcitation effect associated with

potential wells (both in the entrance and in the exit channel) is extensively discussed in the literature.

Scarce literature is instead available for cases, like the present one, in which the well sits on top of

the saddle to reaction.

The analysis of the adiabaticity (solid line), deexcitation (dashed line) and excitation (dashed-

dotted line) fractions can be performed with the help of the lower panel of figs. 4.37-4.41. The plots

point out, in fact, strong deexcitation effects. As a matter of fact, figures 4.38-4.41 show that already

at v = 1 deexcitation is the dominant process. Starting from this state on, there is a region of about

1 eV past the threshold in which deexcitation is more than 50 %, that makes L4 results definitely

differ from L3 ones.
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Figure 4.29: State specific reactive probabilities for v = 0 at j = J = 0 calculated on the LAG4

and the LAG3 PESs and plotted as a function of Etot/Ebar.
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Figure 4.30: State specific reactive probabilities for v = 1 at j = J = 0 calculated on the LAG4

and the LAG3 PESs and plotted as a function of Etot/Ebar.
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Figure 4.31: State specific reactive probabilities for v = 2 at j = J = 0 calculated on the LAG4

and the LAG3 PESs and plotted as a function of Etot/Ebar.
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Figure 4.32: State specific reactive probabilities for v = 3 at j = J = 0 calculated on the LAG4

and the LAG3 PESs and plotted as a function of Etot/Ebar.
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Figure 4.33: State specific reactive probabilities for v = 4 at j = J = 0 calculated on the LAG4

and the LAG3 PESs and plotted as a function of Etot/Ebar.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  1.2  1.4  1.6  1.8

P
ro

b
ab

il
it

y

Reduced Total Energy

N + N2 (v=5,j=0) -> N2 + N

 LAG4
LAG3

Figure 4.34: State specific reactive probabilities for v = 5 at j = J = 0 calculated on the LAG4

and the LAG3 PESs and plotted as a function of Etot/Ebar.
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Figure 4.35: State specific reactive probabilities for j = 0, 1, 2, 3, 4 at v = J = 0 calculated on the

LAG4 PES and plotted as a function of the translational energy. Pleas compare with figures 4.21

and 4.23.
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Figure 4.36: State specific reactive probabilities for j = 6, 8, 10, 12, 14 at v = J = 0 calculated

on the LAG4 PES and plotted as a function of the translational energy. Please compare with figures

4.22 and 4.24.
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Figure 4.37: State to state and state specific (bold line) reactive probabilities for v = 0 at j = J = 0

calculated on the LAG4 PES and plotted as a function of the total energy in the upper panel. Related

adiabaticity and excitation probabilites are plotted as a function of total energy in the lower panel.
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Figure 4.38: State to state and state specific (bold line) reactive probabilities for v = 1 at j = J = 0

calculated on the LAG4 PES and plotted as a function of the total energy in the upper panel. Related

adiabaticity, deexcitation and excitation probabilities are plotted as a function of total energy in the

lower panel.
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Figure 4.39: State to state and state specific (bold line) reactive probabilities for v = 2 at j = J = 0

calculated on the LAG4 PES and plotted as a function of the total energy in the upper panel. Related

adiabaticity, deexcitation and excitation probabilities are plotted as a function of total energy in the

lower panel.
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Figure 4.40: State to state and state specific (bold line) reactive probabilities for v = 3 at j = J = 0

calculated on the LAG4 PES and plotted as a function of the total energy in the upper panel. Related

adiabaticity, deexcitation and excitation probabilities are plotted as a function of total energy in the

lower panel.
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Figure 4.41: State to state and state specific (bold line) reactive probabilities for v = 4 at j = J = 0

calculated on the LAG4 PES and plotted as a function of the total energy (upper panel). Related

adiabaticity, deexcitation and excitation probabilities are plotted as a function of total energy in the

lower panel.
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4.4 The N2 (1Σ+
g ) + N2 (1Σ+

g ) reaction

Chemical reactions of nitrogen molecules are the natural complement to the corresponding

atom molecule ones in a variety of high temperature environments, such as shock tube experiments,

meteor entry and spacecraft reentering into atmosphere.

In shock tube experiments, at first, the activation of nitrogen molecules was difficult to rationalize.

At first, the idea that the reactivity shown by a gaseous mixture containing molecular nitrogen under

electrical discharge could be attributed to N2 was difficult to accept because of its high inactivity.

From this and similar experiments performed using various mixtures of hydrocarbons (which, in

presence of nitrogen, form cianidric acid) the assumption was made that some type of active nitro-

gen [147] would intervene.

Nitrogen molecules encounters play also a key role in modelling air composition both under equilib-

rium [148] and non-equilibrium [149] conditions, like the ones occurring around reentering space-

crafts due to the fact that, as it was already mentioned, nitrogen is the major constituent of some

planetary atmospheres. A list of intervening molecule + molecule collision processes are given in

Reaction Process

N + N2 (v)→ N + N2 (v′) Inelastic
N + N2 (v)→ N + N2 (v′) Reactive
N + N2 (v)→ N + N + N Dissociation
N + N→ N2 Recombination
N2 (w) + N2 (v)→ N2 (w) + N2 (v′) Inelastic
N2 (w) + N2 (v)→ N2 (w′) + N2 (v′) Inelastic
N2 (w) + N2 (v)→ N2 (w′) + N2 (v′) Reactive
N2 (w) + N2 (v)→ N + N + N2 (v′) Dissociation
N2 (w) + N + N→ N2 (w′) + N2 (v′) Recombination

Table 4.5: Main high temperature processes involving nitrogen.

table 4.5 together with the corresponding atom diatom ones. In my thesis work the attention was

focused on preliminary calculations of the ab initio (adiabatic) ground electronic potential energy

values of the N2 + N2 system. The aim was the tuning of the generation of ab initio values for the

applications of the Q5cost model to four atom system.
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4.4.1 Previous work on N2 + N2

The first theoretical potential energy surface for the ground state of the system N2-N2 (BvdA)

was published in 1980 by Berns and A. van der Avoird [150]. In the following years van der

Avoird et al. [151] produced a new PES (AWJ) using new ab initio calculations for the multipole

and short range interaction combined with the theoretical long range electrostatic and dispersion

interaction. This potential has been scaled using two adjustable parameters to represent the second

virial coefficient within the experimental uncertainties. Despite the fact that AWJ potential can

describe most of the macroscopic properties successfully [152,153], it is limited by the fact of using

different approximations to treat the various regions of the PES. Moreover, it cannot reproduce

consistently all the structural features of the N2 + N2 interaction [154].

Other theoretical full ab initio N2-N2 potentials were developed in the last ten years [155–160].

The improvement of these potentials over the BvdA and the AWJ ones is the uniform description of

the interaction in all regions of the arrangement space providing reliable structural information and

reasonable results on different physical contributions to the interaction energy. The first complete

full ab initio PES was developed by Stallcop and Partridge [155]. It was based on CCSD(T) calcu-

lations combined with the values of the second virial coefficient to determine the interaction in the

van der Waals region. On the same way, Wada et al. [156] investigated the structural features and the

PES of N2 dimer by focusing their attention on the possibility of the in-plan gear-like motion of N2

dimers and the relative stability of some conformations. However, due to an incomplete correction

of the BSSE, they did not obtain an analitycal representation of ab initio results.

In 2002 Leonhard and Deiters [158] reported a full ab initio pair potential for nitrogen calcu-

lated at the CCSD(T) level of theory with two different basis sets. Extrapolated results to complete

basis set limit (CBS) have been used to fit a five site model potential that was later used in Monte-

Carlo simulations of thermodynamical properties of nitrogen. A new four-dimensional ab initio

potential energy surface was proposed by Karimi et al. in 2005 [159]. They performed massive

ab initio calculations for several geometries of the N2 dimer with a fixed internuclear bond length

using the supermolecular Møller-Plesset perturbation theory up to second order (MP2) [161].

In the last year Gomez et al. built a new global fit of the ground state potential energy values

for the van der Waals dimer using perturbative and supermolecular methods [160]. To characterize

the potential of such system, they have used the well suited symmetry adapted perturbation theory

(SAPT) method to generate the ab initio energies on the whole grid. The analytical expression used
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in the fitting procedure implies the calculation of monomer multipole moments, as well as that of

the long-range dispersion and induction coefficients. This last work can be considered as the best

study available up to date for a fully ab initio PES for the ground state of the N2-N2 system.

On the experimental the available information on N2-N2 system is concerned with the estimate

of the second virial coefficients and solid state data, derived for the first time in the late 70s. Out of

those data the parameters of a simple Lennard-Jones model potential have been obtained through a

fit [162–166].

In 1998, a group of the Perugia University [167] proposed a potential energy surface obtained

by combining ab initio and experimental information through an expansion in bipolar spherical har-

monics involving more than 20 terms. Subsequently [168], a more compact representation for the

PES was introduced by Aquilanti et al. including an harmonic expansion functional form to describe

the salient geometries of the dimer and account for the relative contributions to the intermolecular

interaction from components of different nature. In particular, the parameters of the radial coeffi-

cients were derived from the analysis of the integral collision cross-section and the second virial

coefficient (particularly sensitive to the strength of interaction and its anisotropy).

4.4.2 Our MP and CCSD ab initio calculations

For the N2-N2 system we have carried out some sets of preliminary ab initio calculations by

keeping the N2 internuclear distance and orientation in space fixed and varying R (see fig. 4.42)

the distance between the centers of mass of the two molecules, using two different basis sets from

the correlation consistent series developed by Dunning [169]. Three sets of calculations were per-

formed. The choice of appropriate coordinate system for an electronic structure calculation is es-

sential. In the case of two linear diatomic molecules (say a and b) it is often convenient to use a

space fixed (or global) axis system in which the z-axis is taken as passing through the center of

mass of the two molecules (see Fig. 4.42). In this scheme the position of each of the four atoms

κ, λ, µ and ν is defined by two polar angles θ and ϕ, of which the first is the angle formed by the

intenuclear axis and the space fixed z axis, the second is the difference between azimuthal angles

ϕ = ϕa−ϕb. The dimer of two linear molecules can then be described by four internal coordinates

(R, θa, θb,ϕ) where θ defines the orientations of each monomer relative to R while ϕ defines the

dihedral angle formed by the two planes (defined by the z axis and the axis of an N2 bond). The

diatomic molecular bond lengths are set fixed at its experimentally determined equilibrium value of
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Figure 4.42: Diagrammatic representation of the (N2)2 dimer and related coordinate system

1.094 Å [170]. With this choice of coordinate system the four conformations treated in this work

and illustrated in Fig. 4.43, have been obtained by varying the set of four parameters: the L-shaped

(linear, D∞h), H-shaped (parallel, D2h), T-shaped (perpendicular, C2v) and X-shaped (crossing,

D2d), corresponding respectively to the sets (0◦, 0◦, 0◦, R), (90◦, 90◦, 0◦, R), (0◦, 90◦, 0◦, R) and

(90◦, 90◦, 90◦, R). The first set of calculations were performed to obtain a general overview of the

Figure 4.43: The four different configurations of the (N2)2 dimer considered for the calculations.

interaction energy using the supermolecular Møller-Plesset perturbation theory up to second order

for four types of (N2)2 arrangements channels. To increase the accuracy and to include more cor-

relation energy the calculations were repeated using the CCSD(T) (coupled cluster using single and

double substitutions including triple excitation perturbatively) for all the four conformations with a

distance of the centers of mass of the two molecules varying from 0.1 to 10 Å and correcting the

result for the BSSE (basis set superposition error), by making use of the FCP procedure previously

described. In the last set of calculations the attention was focused on reactive processes. To this end
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we performed an automatic geometry optimization starting from two particular H conformation, in

which one N2 bond is at its equilibrium length, while the other is stretched either of 0.8 Å (H0.8)

or 1.4 Å (H1.4). All the calculations were carried out using the version of the GAMMES-US [8] ab

initio package available on the COMPCHEM segment of the EGEE European GRID.

4.4.3 Computational Details

Ab initio calculations for the N2-N2 system have been carried out using two different methods

with two basis sets from the correlation consistent series developed by Dunning [169], the cc-

pVXZ with X=D,T. These families of basis sets are widely used since they are designed to converge

systematically to the complete basis set (CBS) limit using extrapolation techniques. The ’cc-p’,

stands for ’correlation consistent polarized’ and the ’V’ indicates they are valence only basis sets.

Correlation consistent basis sets are built up by adding shells of functions to a core sets of atomic

Hartree-Fock functions. Each function in a shell contributes similar amounts of correlation energy in

an atomic calculation. For the 1st and 2nd row atoms the cc-pVDZ (correlation consistent-polarized

valence double zeta) basis set adds 1s, 1p, and 1d atomic orbital functions, while the cc-pVTZ set

adds another s, p, d and f atomic orbital functions, etc. These basis sets can be augmented with core

functions for geometric and nuclear property calculations, and with diffuse functions for electronic

excited-state calculations, electric field properties calculations, and long-range interactions such as

van der Waals forces.

The ab initio calculations were carried out using the GAMESS-US [8] package. As already

mentioned, the interaction energy between two monomers is defined as:

∆E(R̂) = E(AB, R̂){ab} − E(A){a} − E(B){b}. (4.28)

To obtain the energy E(AB, R̂){ab} of the dimer at different R̂ we perform different energy calcu-

lations on the system increasing the distance of the center of mass of the two monomers. Two sets

of calculations were performed for each of the above mentioned basis set. Namely:

-the first set of calculations have been carried out to obtain a general overview of the interaction

energy using the supermolecular Møller-Plesset perturbation theory up to second order for each of

the four configuration described in the previous section: L-shaped, H-shaped, T-shaped and X-

shaped. The MP2 method is a good compromise between accuracy and computational cost and
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therefore is well suited for obtaining a first idea of the PES. In fact, MP2 calculations do not require

a large size memories and the time for a single calculation, on a fairly simple system like N2-N2, is

short.

A major problem of the MP method is that the convergence of the MP series is not guaranteed a

priori. In the present case, as shown by Karimi et al [159], numerical tests on the convergence of

the calculated interaction energy have shown initial oscillations in the MP series up to fourth order

with the MP2 results being more stable (negative) than those of the MP4.

-the calculations have been repeated using the CCSD(T) [171] method (coupled cluster using

single and double substitutions including triple excitation perturbatively) for all of the four confor-

mations with a distance of the center of mass of the two dimer varying from 0.1 to 8 Å in order to

obtain values of increased accuracy including more correlation energy. To correct the BSSE using

the FCP procedure [5] an additional batch of calculations were performed. This method let us to

calculate the BSSE by re-performing all the calculations using the mixed basis sets, through the

introduction of ”ghost orbitals”, and then subtracting this error a posteriori from the uncorrected

energy.

The CCSD(T) technique is more accurate than the MP2 though the price to pay is the request of a

large amount of memory. Moreover, coupled cluster calculations, making use of large basis sets,

take long CPU time even if the system is made by few atoms. This difference in resource demand is

shown clearly in table 4.6, where the CPU time and the memory request for the calculations on the

parallel conformation, at a distance of the center of mass of 4 Å , of the N2-N2 system is shown. As

MP2 CCSD(T)
cc-pVDZ cc-pVTZ cc-pVDZ cc-pVTZ

CPU Time 1.0 14.5 42.1 1717.4

Memory allocated 1.142 13.926 6.225 48.039

Table 4.6: CPU Total time [sec.] and Dynamic Memory allocated [Mwords] for a single geometry

calculation for the N2-N2 system with the CCSD(T) and MP2 method with cc-pVDZ and cc-pVTZ

basis set.

we can see, the time for a single calculation increases remarkably in passing from MP2 to CCSD(T)
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whereas the memory request depends on the dimension of the basis set (the two-electron integrals

stored are proportional to the number of basis functions). As apparent from the table, CCSD(T)

calculations with a large basis set for all the points of the grid at which the PES has to be calculated

require long time and a big memory availability, not easily satisfied by single machines. This copes

perfectly well with the nature of the Grid infrastructure [see Chap. 3] by distributing the calcu-

lations for different geometries on different Computing Elements and elaborate the results on the

stored values. In this way the CPU time decrease proportionally with the number of the machines

available having the needed memory size. However the CCSD(T) method becomes unusable on the

Grid when the basis set become too large. For a single CCSD(T) calculation on that system with a

cc-pVQZ basis set, in fact, the memory required for the CC integral sorting is 207062056 words,

that is hard to satisfy by most of the Grid CEs. This prompts the need for HPC machines to be made

available on the grid together with parallel computing tools. situation suggest us to perform these

very accurate calculation on a parallel system instead of Grid infrastructure and this will be the aim

of future studies.

4.5 The Interaction Energy

As already mentioned, the calculations were carried out at different levels of theory. In doing

this, initially we focused on an overall (low level) ab initio analysis of the general features of the

PES. In fact, due to the novelty represented by this type of calculations, we preferred to proceed

step by step while trying to work out the potential energy surface for N2 + N2. Accordingly, the first

calculations were carried out at MP2 RHF level of theory for the different configurations shown in

Fig. 4.43. For each geometry described above, we calculated single point energy values by varying

the intermolecular distance R, from 1.0 to 10.0 Å in step of 0.1 Å, while keeping fixed the N2

internuclear distance at its experimental equilibrium value (1.094 Å). As already mentioned, the

BSSE correction was also evaluated.

4.5.1 MP ab initio results

Figures 4.44-4.47 show the behaviour of the calculated long range intermolecular pair potential

energies of the dimer at different values of R, for all the investigated geometries of the dimer, using

the cc-pVDZ basis set. For each investigated geometry the results of the ab initio MP calculations
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(solid line), the related BSSE energy values (dotted line) and the sum between MP and BSSE results

(calculated following the FCP procedure-dashed line) are plotted. From the figures it is apparent

that, at this level of theory, the T-shaped geometry is the most stable of our atom complexes. As a

matter of fact, the well stabilizing it is about -1.0x10−3 Hartree deep while that of the other geome-

tries are about one order of magnitude less deep. However, as can be also seen from the figures for

all geometries the calculated BSSE correction is of the same order of magnitude, especially about

the minimum. This is due to the fact that the used basis set is not sufficiently large. For this rea-

son, we carried out similar calculations using the cc-pVTZ basis set. Related results are plotted in

Figures 4.48- 4.51, using the same layout as the previous plots. The plots show that the new MP

energy values decrease of about 0.5x10−04 Hartree around the minimum for the H and X-shaped

geometries, while for the L and T-shaped geometries the ab initio energy values are smaller. The

advantage of using a larger basis set can be appreciated by inspecting the BSSE correction plots.

In fact, for the whole set of geometries, the related BSSE values decrease with respect to those

calculated with the smaller basis set using the same level of theory. As a result, the position of the

minimum, for all the geometries, does not vary so much when the BSSE correction is applied. It is

important to notice also that when using the larger basis set the T-shaped geometry does not result

anymore to be the most stable structure: its interaction energy value at the minimum becomes in

fact comparable with that of the X-shaped one.

In order to better rationalize the results of the MP2 ab initio calculations, in Figures 4.52- 4.55 are

compared, for each geometry, the potential energy curves calculated with the two basis set, and in

Table 4.7 are listed, the location of the minimum, the interaction energy and the BSSE. It can be

cc-pVDZ cc-pVTZ

Req Eint BSSE Req Eint BSSE
(Å) (µH) (µH) (Å) (µH) (µH)

H 3.4 -630 867 3.6 -650 386

L 4.6 -409 603 5.0 -189 137

T 3.9 -1000 906 4.1 -719 307

X 3.4 -632 835 3.5 -717 461

Table 4.7: Intermolecular equilibrium distance, interaction energy (Eint), BSSE correction, calcu-

lated at MP2 level with two different basis set.

pointed out that the value of R at the minimum does not depend strongly on the used basis set, in

fact, for the H, T, X-shaped geometries, its value varies only of 0.2 Å when using the cc-pVTZ
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basis set; the results found for the L-shaped geometry is quite anomalous, but we encountered some

problems in the calculations for this geometry, in fact we have not been able to work out the inter-

action energy for some values of R, due to an error in the execution of the GAMESS-US code.

On the other hand, the BSSE correction is almost as large as the interaction energy when using the

smaller basis set: this implies that the cc-pVDZ is very poor in describing the interaction of two

nitrogen molecules in the vdW region. With the cc-pVTZ basis set the BSSE correction is reduced

almost at the half with respect to the value calculated with the cc-pVDZ basis set. This means that

a large basis set is essential in calculating the potential energy values of the nitrogen dimer. Finally,

as already mentioned, the most stable structure is the T-shaped one with the cc-pVDZ but, when the

cc-pVTZ basis set is used the relative stability of the T-shaped geometry becomes comparable to

that of the X-shaped geometry.
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Figure 4.44: Calculated MP2 interaction energy values with the cc-pVDZ basis set for the H-shaped

geometry at long range. Solid line represents the calculated ab initio potential energy values, the

dotted line represents the calculated BSSE, the dashed line the sum.
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Figure 4.45: Same as Fig. 4.44 for L-shaped geometry.
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Figure 4.46: Same as Fig. 4.44 for T-shaped geometry.
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Figure 4.47: Same as Fig. 4.44 for X-shaped geometry.
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Figure 4.48: Calculated MP2 interaction energy values with the cc-pVTZ basis set for the H-shaped

geometry at long range. Solid line represents the calculated ab initio potential energy values, the

dotted line represents the calculated BSSE, the dashed line the sum.

4 4.5 5 5.5 6 6.5 7 7.5 8
R/Å

-2.0×10-4

-1.5×10-4

-1.0×10-4

-5.0×10-5

0.0

5.0×10-5

1.0×10-4

1.5×10-4

2.0×10-4

E/
H

ar
tre

e

Figure 4.49: Same as Fig. 4.48 for L-shaped geometry.
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Figure 4.50: Same as Fig. 4.48 for T-shaped geometry.
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Figure 4.51: Same as Fig. 4.48 for X-shaped geometry.
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Figure 4.52: Interaction MP2 energy values for the H-shaped geometry at long range calculated

using the cc-pVDZ (solid line) and cc-pVTZ (dashed line)
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Figure 4.53: Interaction MP2 energy values for the L-shaped geometry at long range calculated

using the cc-pVDZ (solid line) and cc-pVTZ (dashed line)
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Figure 4.54: Interaction MP2 energy values for the T-shaped geometry at long range calculated

using the cc-pVDZ (solid line) and cc-pVTZ (dashed line)
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Figure 4.55: Interaction MP2 energy values for the X-shaped geometry at long range calculated

using the cc-pVDZ (solid line) and cc-pVTZ (dashed line)
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Figure 4.56: Calculated CCSD(T) interaction energy values with the cc-pVDZ basis set for the H-

shaped geometry at long range. Solid line represents the calculated ab initio potential energy values,

the dotted line represents the calculated BSSE, the dashed line the sum.

4.5.2 CCSD(T) ab initio results

In order to improve the accuracy of the ab initio potential energy values we carried out addi-

tional calculations at the CCSD(T) level of theory for the same geometries considered for the MP2

ones. Results obtained using the cc-pVDZ basis set are shown in figures 4.56- 4.59 CCSD(T) re-

sults qualitatively reproduce the MP2 values. Also for CCSD(T) calculations, in fact, the T-shaped

geometry is the most stable structure and the value of R at the energy minimum is about 3.8 Å . At

the same time, hand, the interaction energy is in general smaller than the MP2 one and the BSSE

correction is always greater than the interaction energy value, for all the geometries investigated,

making the results of limited validity. In addition, while the BSSE corrections for the MP2/cc-pVDZ

results are generally as large as the interaction energy, those calculated for the CCSD(T)/cc-pVDZ

ones are larger. Finally, the interaction energy curves corrected for the BSSE (dashed lines in the

plots) show the same shift in Req as that found for the MP2/cc-pVDZ calculations Also in this case

the effect is attributed to an incorrect evaluation of the BSSE when using the cc-pVDZ basis set.

For this reason, we improved the level of the calculations by making use of the cc-pVTZ basis

set. Figures 4.60-4.63 show the plots of the potential energy values for the various geometries of

(N2)2 as a function of the intermolecular distance R. In particular, the CCSD(T)/cc-pVTZ calcu-

lated interaction energy values (solid line), the related BSSE energy values (dotted line) and the sum
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Figure 4.57: Same as Fig 4.56 for L-shaped geometry.
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Figure 4.58: Same as Fig 4.56 for T-shaped geometry.
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Figure 4.59: Same as Fig 4.56 for X-shaped geometry.

between CCSD(T) and BSSE results are shown. In Table 4.8 the features of the different potential

energy curves (as for the MP2 calculations) around the minimum for each geometry are listed.

It can be pointed out that the trend found in improving the basis set for the MP2 calculations is

confirmed for the CCSD(T) ones. In fact, we found that for the H and T-shaped geometries the

interaction energy value at the minimum decreases when using the cc-pVTZ basis set with respect

the CCSD(T)/cc-pVDZ one, while it increases for the L and X-shaped geometries. Moreover, as for

previous MP2 calculations, the application of the BSSE corrections to the interaction energy values

with the cc-pVTZ does not lead to a strong variation of the position of the minimum. In this case,

although the BSSE correction values are not small there is a significant improvement. In fact, for

all geometries the calculated corrections are definitively smaller than the values of the interaction

energy. This is not true only for the L-shaped geometry for which the value of the BSSE correction

is almost as large as the corresponding interaction energy. Also for this set of calculations, we found

that the most stable structures are the T and X-shaped configurations.

4.5.3 MP2 versus CCSD(T)

In order to compare the results obtained for MP2 with those obtained with CCSD(T) level of

theory, we plotted the interaction potential energy values, calculated with the cc-pVDZ basis set,

for both the MP2 and CCSD(T) calculations. In figures 4.64-4.71 the comparison of the calculated

interaction with respect to the values obtained using the cc-pVDZ basis set is shown. The similar
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Figure 4.60: Calculated CCSD(T) interaction energy values with the cc-pVTZ basis set for the H-

shaped geometry at long range. Solid line represents the calculated ab initio potential energy values,

the dotted line represents the calculated BSSE, the dashed line the sum.
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Figure 4.61: Same as Fig. 4.60 for L-shape geometry.
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Figure 4.62: Same as Fig. 4.60 for T-shape geometry.
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Figure 4.63: Same as Fig. 4.60 for X-shape geometry.
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cc-pVDZ cc-pVTZ

Req Eint BSSE Req Eint BSSE
(Å) (µH) (µH) (Å) (µH) (µH)

H 3.5 -370 678 3.7 -441 326

L 4.7 -280 483 5.1 -129 121

T 3.9 -822 875 4.1 -582 293

X 3.5 -449 657 3.6 -524 389

Table 4.8: Intermolecular equilibrium distance, Interaction energy (Eint), BSSE correction, calcu-

lated at CCSD(T) level with two different basis sets.

curves obtained when using the cc-pVTZ basis set are shown in figures 4.68-4.71. It is important to

point out here that the calculated energy values are not corrected for the BSSE.

The comparison between CCSD(T) and MP2 calculations shows, in general, that the CCSD(T)

energies are smaller than those of MP2 calculations. This agrees with the fact that the accuracy of

the CCSD(T) method is higher level with respect to the MP2 one.

In particular, the effect is stronger with the cc-pVDZ while for the improved cc-pVTZ basis set,

the effect is less evident. Thanks to this result, we can conclude that the cc-pVDZ basis set is

unsuitable for describing the N2 - N2 interaction, and, at least, the cc-pVTZ basis set must be used

as a starting point for the use of larger basis sets, such as the cc-pVQZ one. Finally, it is important

to point out that, while most of the performed calculations are usually successful, some calculations

fail to complete correctly. These errors are, in general, convergence problems encountered in the

short-distances calculations. In this region, in fact, the method used to generate the initial guess

orbitals, for the SCF iteration, can cause errors. The GAMESS-US code, in fact, for the generation

of the initial orbitals carries out an extended Huckel calculation using an Huzinaga MINI basis set

and projects them onto the current basis set. In most of the case encountered, this problem gives an

error in the reordering of the orbitals that cause the abnormal termination of the job. This can be

avoided by using a different method for the generation of the initial orbitals (e.g. diagonalization of

the one-electron part of the Hamiltonian, use of the resulting orbital from a previous calculation on a

similar system etc.) when, however, are in general less accurate than the Huckel ones. In other cases

the difficulties of the method in calculating the initial guess orbitals leads to a linear dependence

problem. In this case the GAMESS code has a built-in function, called QMTTOL, which lets the

user to set the threshold for the linear dependence. Any function in the Symmetry-Adapted linear
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Figure 4.64: Calculated interaction energy values with the cc-pVDZ basis set for the H-shaped

geometry at CCSD(T) (solid line) and MP2 (dashed line) levels of theory.

combination variational space whose eigenvalues of the overlap matrix is below this tolerance is

considered to be linearly dependent. Such functions are dropped from the variational space (what is

dropped, however, is not the individual basis function, but rather some linear combination(s) of the

entire basis set that represents the linear dependent part of the function space). In the best cases, this

may cause an increase of the final energy of the order of tens of microhartrees (depending on the

number of orbitals removed). In the worst cases, however, it can give convergence errors difficult to

eliminate.

4.6 Building an overall potential energy surface

Since our main focus is on the overall description of the possible processes (including reactive

processes), we extended our calculations by performing also some calculations of gradients for

automatic geometry optimization and transition states search and we investigated the possibility of

extending the the LAGROBO functional to deal with four atom systems.
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Figure 4.65: Same as Fig. 4.64 for the L-shaped geometry.
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Figure 4.66: Same as Fig. 4.64 for the T-shaped geometry.
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Figure 4.67: Same as Fig. 4.64 for the X-shaped geometry.
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Figure 4.68: Calculated interaction energy values with the cc-pVTZ basis set for the H-shaped

geometry at CCSD(T) (solid line) and MP2 (dashed line) levels of theory.
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Figure 4.69: Same as Fig. 4.68 for the L-shaped geometry.
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Figure 4.70: Same as Fig. 4.68 for the T-shaped geometry.
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Figure 4.71: Same as Fig. 4.68 for the X-shaped geometry.

4.6.1 Possible reactive processes

To investigate possible reactive paths for N2 + N2 we started from two particular H confor-

mations, in which one N2 bond is at its equilibrium internuclear distance, while the other one is

stretched either of 0.8 Å (H0.8) or 1.4 Å (H1.4). In both configurations R=0.5 Å.

To optimize the geometries the calculations were performed by varying R under the effect of the en-

ergy gradient. For the first conformation, the H0.8, one local minimum in which the two monomers,

arranged as a rectangle (see Fig. 4.72), are separated by 1.3 Å was found. In this case the internu-

clear distance of each molecule is 1.4760 Å. For the H1.4 configuration the optimization finds a local

energy minimum when one molecule at near equilibrium is inserted into the other (see Fig. 4.73)

whose bond is stretched to 2.51 Å.
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This seems to indicate that an exchange reaction between these two molecules can occur. More-

over, the fact that the minimum energy path shows a barrier followed by a minimum at R=0 indicates

the formation of a well at the transition state sandwiched by two barriers (as also found for the N +

N2 system). For this reason, we performed additional calculations, at the same level of theory, in or-

der to search for possible transition states, starting from the results obtained by optimizing the H0.8

and H1.4 configurations (in particular, we used the optimized values of the internuclear distances)

and varying R from 2.0 to 0.0 Å. All these calculations have been carried out at MP2 level of theory

using the cc-pVDZ basis set. The calculated energy values are plotted in Fig. 4.74 and Fig. 4.75,

respectively. As shown by the figures, the H1.4 values show a minimum at R=0 and confirm the

possibility of an insertion (while the H0.8 values show a repulsive barrier).

4.6.2 Four atom systems fitting tools

A possible approach to the fit of potential energy values could be based on the four atom ver-

sion of the Paniagua procedure. Here we give the details of the LAGROBO one since it has been

already used for atom-diatom systems. As previously discussed, the general formulation of the

LAGROBO PES is given by a combination of the ROBO functionals V ROBO
L of all the reaction

channels contributing to the reactive process, weighed by the coefficient wL related to the closeness

of the considered geometry to the collinear one. When considering a four atom system the possible

single process arrangements are:

κ+ λµν ! κλ+ µν ! κλµ + ν (4.29)

It is important to point out that we have to include, in principle, 12 contributing V ROBO
L terms,

related to the possible 12 processes. In this case the V P terms have the form:

V ROBO
L = DLFL + IL (4.30)

where the product DLFL is the ROBO-like model potential of process L and IL is a corrective term

due to the effect of the remaining atom-atom pairs (in the case of four atom systems this is just one

term). The ROBO terms ensure the correct reproduction of both the asymptotic properties and the

characteristics of the fixed collision angle MEPs derived from the ab initio data (possibly modified

to incorporate corrective experimental information). They are given the simple quadratic form

DLFL ≡ D(α,σ; τ, δ, γ)

[

ρ2

ρ2
◦(α,σ; τ, δ, γ)

−
2ρ

ρ◦(α,σ; τ, δ, γ)

]

(4.31)
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To shape the fixed angle MEPs the parameters of the different V P ROBO terms (the location of the

reaction channel energy minimum, ρ◦(α,σ; τ, δ, γ), and of its depth, D(α,σ; τ, δ, γ)) are given as

functions of the angles α and σ parametrically dependent on the other angles τ , δ and γ.

For the generic tetratomic system κ, λ, µ, ν the α and σ angles were first defined as

α = arctan

(

nµν

nκλ

)

σ = arccos

(

nλµ

ρ

)

ρ =
√

n2
κλ + n2

λµ + n2
µν (4.32)

(nηξ is the BO coordinate of the ηξ pair of atoms) while the angles τ , δ and γ are defined as

τ =
√

φ′2 + ψ′2 + θ′2

δ = arctan

(

ψ′

θ′

)

γ = arccos

(

φ′

τ

)

(4.33)

with

φ′ = 2π − 2φψ′ = 2ψ − 2πθ′ = 4θ

The physical angles φ, ψ and θ defining the geometry and the relative orientation of the tetratomic

system are shown in Fig. 4.76. The term IL concerned with the interaction of the diatom κν with

the diatomic pair λµ is expressed as

IL ≡ IL(nκν ; n̄) = DκνS(n̄)(n2
κν − 2nκν) (4.34)

where λ and µ with n̄ = (nκλ + nµν)/2, Dκν being the dissociation energy of the κν diatom, S(n̄)

being a switching function equal to 1 + cos [π(n̄ + p)/2p] for n̄ < p and zero elsewhere. This

functional representation, however, leads to some discontinuities which made some trajectories not

to converge.

Accordingly, the second problem of this phase was the adoption of a new formulation of the angular

variables (see Fig. 4.77) to avoid the just mentioned discontinuities.

As can be seen in the figure, in the new formulation of the LAGROBO functional the angular

coordinates are redefined as follows: φ is still the angle formed by the κ−λ and λ−µ bonds (as in

the old formulation), ε is the angle formed by the λ−µ and µ− ν bonds and ζ is the dihedral angle

formed by the κλµ and λµν planes. The use of the φ, ε and ζ coordinates to describe the relative

orientation of atoms involves a new definition of the functions D, ρ0, σ and α in these coordinates.
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In particular, a full analytic dependence of these functions on the φ, ε and ζ coordinates has been

worked out. Accordingly, one has:

D(φ, ε, ζ) = d◦ +
(

d1(ε− ε0)2 + d2(ε− ε0)3 +
(

d3 + d4ε
2)(φ− d5 − d6ε

2
)2
)

× exp
[

d7(ε− π)
(

ζ − d8 exp(d9(ε− ε0)2
)]

ρ◦(φ, ε, ζ) =
(

r1 + r2 exp
[

r3(ε− π)2
]

(φ− φ0)
3
)

×
(

1 + r4(ε− π)(ζ − ζ0)2 + r5(ε− π)(ζ − ζ0)3
)

α0(φ, ε, ζ) =
(

(a1 + a2(ε− ε0))(φ− φ0) + (a3 + a4(ε− ε0))(φ − φ0)
2

+(a5 + a6(ε− ε0))(φ− φ0)
3
)

exp
[

a7(ε− π)(ζ − ζ0)2
]

σ0(φ, ε, ζ) =
(

s1 + s2(ε− ε0) + s3(φ− φ0)
2
)

exp
[

s4(ε− π)(ζ − ζ0)2
]

(4.35)

where the angles φ0, ε0 and ζ0 are the values of φ, ε and ζ at the transition state.

4.6.3 An estimate of the thermal rate coefficient

Due to the limited number of potential energy values and their limited accuracy we decided

not to carry out a global fitting. We concentrated instead our efforts into the investigation of the

suitability of the Q5cost model to carry out a preliminary analysis of the PES using directly the

calculated ab initio points. Efforts already paid along this direction led us to create single surface

(multiple geometries) files to evaluate qualitatively some features of the reactive process.

To this end, the potential energy values calculated for the X-shaped geometry and those obtained

for the H1.4 after optimization, at the same level of theory, have been plotted together as a function

of R, as shown in Fig. 4.78. The choice of comparing the H1.4 plot with the one of the X-shaped

geometry is motivated by the fact that the latter is barrier less at small and intermediate range, while

it increases significantly as R becomes smaller than 1. This leads to a crossing of the two curves

at R corresponding to 1.2 - 1.4 Å. This seems to confirm the possibility of a reactive path in the

N2 + N2 PES in which the two monomers, arranged in an X-shaped fashion, interact each other

in a perpendicular way until they reach a first energy minimum at R ≃ 1.4 Å and then a second

minimum (located at R ≃ 1.2 Å) that leads to a rearrangement in which one molecule is inserted

into the other, as depicted in Fig. 4.73. This suggests that a more detailed study of this reaction

should be carried out for future optimization calculations at higher level of theory.

This allows us to consider the minimum of the well of the insertion calculation as a saddle to

VIRT&L-COMM.9.2016.3

ISSN: 2279-8773



170 Section 4

reaction and to calculate using a crude transition state approach the thermal rate coefficient. The

use of the crude transition state approach to evaluate the thermal rate coefficient leads to the use of

the equation

k =
kbT

h
e

−∆E
RT (4.36)

The use of this equation gives an estimate of k corressponding to 4.25x10−27 cm3 molecule s−1 due

to the fact that ∆E= 759.442 KJ/Mol and T=1000 K.
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Figure 4.72: Sketch of the nitrogen molecules as obtained from the H0.8 optimization.

Figure 4.73: Sketch of the nitrogen molecules as obtained from the H1.4 optimization.
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Figure 4.74: Calculated single energy values vs R for the H0.8 configuration
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Figure 4.75: Calculated single energy values vs R for the H1.4 configuration
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Figure 4.76: Sketch of the angular variable definition

Figure 4.77: Sketch of the new angular variable definition

VIRT&L-COMM.9.2016.3

ISSN: 2279-8773



174 Section 4

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2
R/Å

-218,5

-218,4

-218,3

-218,2

-218,1

-218

-217,9

-217,8

E
/H

ar
tr

ee

Figure 4.78: Interaction energy values calculated at MP2/cc-pVDZ.
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Chapter 5

Conclusions

The study carried out in this thesis represents an attempt to design a complete workflow for

dealing with quantum reactive scattering calculations of the reactive properties of atom-diatom sys-

tems on the grid.

The first and more detailed investigation has been carried out for atom-diatom systems. In the

CDK laboratory the related know-how is well consolidated and the software components sufficiently

well validated. As a matter of fact, the related workflow can count on the fact that ab initio calcu-

lations have been performed at high level accuracy (by several groups), that the set of calculated

potential energy values is large enough to allow the fitting using different functional forms, that

quantum reactive scattering codes are well structured and implemented on the grid and, finally, that

the statistical and graphical analysis of the results is properly made. In addition to the appropriate

dealing with the physical quantities, the related programs are already suited for the implementation

of the Q5cost model and for its possible extension to quantum dynamics.

Less mature is the area of four atom systems. In fact, the work has been confined to the tuning of

the job parameters to calculate the ab initio potential energy values for sufficiently heavy four atom

systems. The search for a proper basis set and for a sufficiently high level method is still ongoing,

though both aspects are still progressing having in mind the structuring of quantum chemistry data

according to a Q5cost scheme.
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However, both the structures found in the electronic structure and the progress made in the grid

implementation of the code represent a solid base for future work. As a matter of fact, the work

done on the N + N2 and N2 + N2 systems illustrated in the thesis is unprecedented.
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[96] A. Laganà, A. Riganelli and O. Gervasi Lecture Notes in Computer Science, 3980, 665-674

(2006).

[97] W. L. Hase, R. J. Duchovic, X. Hu, A. Komornicki, K. F. Lim, D. -h. Lu, G. H. Peslherbe, K.

N. Swamy, S. R. Vande Linde, A. Varandas, H. Wang, and R. J. Wolf VENUS96: A General

Chemical Dynamics Computer Program, Quantum Chemistry Program Exchange, 16, 671

(1996)

[98] Smith, W., Forester, T.R.: DL POLY2: a general-purpose parallel molecular dynamics simu-

lation package. J. Mol. Graph., 14, 136(1996).

[99] http://www.univie.ac.at/columbus/.

[100] Skouteris, D., Castillo, J.F., Manolopulos, D.E.: ABC: a quantum reactive scattering pro-

gram. Comp. Phys. Comm., 133, 128 (2000).

[101] H. Meyer, U. Manthe, L. Cederbaum, Chem. Phys. Lett., 165, 73 (1990).

[102] U. Manthe, H. D. Meyer, L. S. Cederbaum, J. Chem. Phys., 97, 3199 (1992) .

[103] D. M. Ceperley, Rev. Mod. Phys., 67 279 (1995).

[104] C. Angeli, G. L. Bendazzoli, S. Borini, R. Cimiraglia, A. Emerson, S. Evangelisti, D. May-

nau, A. Monari, E. Ro ssi, J. Sanchez-Marin, P. G. Szalay, A. Tajti, IJQC, 107, 2082 (2007).

[105] COST in Chemistry Action D23 http://costchemistry.epfl.ch/docs/D23/d23.htm

[106] E. Rossi, A. Emerson, S. Evangelisti, Lect. Not. in Comp. Science, 2658, 316 (2003).

[107] Specification of XML can be found at the site (http://www.w3.org/XML) ; A.Holmer, XML

IE5 Programmer Reference, Wrox Press, Chicago, IL, USA, 1999.

VIRT&L-COMM.9.2016.3

ISSN: 2279-8773



The bibliography 183

[108] HDF5 a general purpose library and file format for storing scientific data.

http://hdf.ncsa.uiuc.edu/HDF5/

[109] P. Murray-Rust, H. S. Rzepa, M. Wright, New J. Chem., 618(2001).

[110] P.Casarini, L.Padovani, ”The Gnome DOM Engine”, accepted paper at the Extreme Markup

Laes 2001 Conference, March 2001; see also http://gdome2.cs.unibo.it/.
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[127] E. Garcia, A. Laganà, J. Chem. Phys. 103, 5410 (1995).
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