

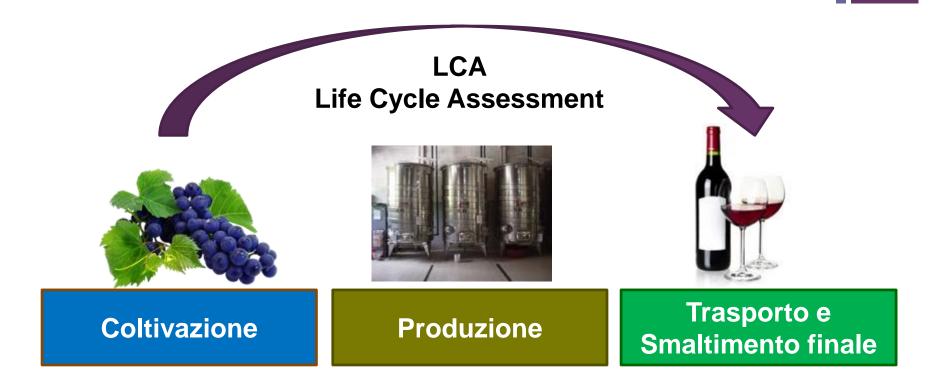
Applicazioni sostenibili del "Power to gas"

La Vitivinicoltura 2.0 e l'Economica Circolare.

Perugia 11/11/2016 Mario Ragusa Enologo ragusamario@alice.it

Obiettivi generali

- Il progetto si pone come obiettivo generale la riduzione dalla dipendenza dalle fonti energetiche tradizionali e l'incremento dell'utilizzo di energia da fonti rinnovabili.
- Il progetto è stato concepito con l'obiettivo di migliorare la competitività dell'industria enologica attraverso la promozione e l'utilizzo di tecnologie rispettose dell'ambiente e integrate nel tessuto territoriale.
- l'utilizzo di sottoprodotti residuali del settore agroindustriale determina la riduzione delle emissioni di CO₂ equivalente (la carbon foot print), favorendo così le linee di sviluppo sostenibile e lotta ai cambiamenti climatici.



L'anidride carbonica di fermentazione: da scarto in opportunità

Le emissioni di CO₂ legate alla produzione del Vino

Emissioni Convenzionali di CO₂ mediamente sono calcolate intorno a 1,45 kg /bottiglia.

CO₂ – Produzione dalla Vinificazione

Il processo di fermentazione alcolica genera anidride carbonica come sottoprodotto.

Da 180 gr di glucosio si ottengono 88 gr di CO2.

 $C_6H_{12}O_6 \rightarrow 2 CH_3CH_2OH + 2 CO_2$

Modalità di recupero realizzata nel contesto del Progetto Vienergy viEnergy

Qualità della CO2 catturata

Prova produzione Mat G 26460

RAPPORTO ANALISI IMPUREZZE IN ANIDRIDE CARBONICA

		Minimo rilevabile		Concentrazione	Unita' di misura
Umidita'	H2O	0,100		64,472	ppm v/v
Metano	CH4	0,100		1,173	ppm v/v
Idrocarburi non metanici Totali		0,050		< 0,050	ppm v/v
Etano	C2H6	0,100		< 0,100	ppm v/v
Etilene	C2H4	0,100		< 0,100	ppm v/v
Propano	СЗН8	0,100		< 0,100	ppm v/v
Acetilene	C2H2	0,100		< 0,100	ppm v/v
I-Butano	C4H10	0,100		< 0,100	ppm v/v
n-Butano	C4H10	0,100		< 0,100	ppm v/v
i-Pentano	C5H12	0,050		< 0,050	ppm v/v
n-Pentano	C5H12	0,050		< 0,050	ppm v/v
Idrogeno	H2	0,500		3,911	ppm v/v
Ossigeno	02	0,500		326,882	ppm v/v
Azoto	N2	0,500		614,252	ppm v/v
Monossido di Carbonio	CO	0,500		< 0,500	ppm v/v
Alcool metilico	СНЗОН	0,500		1,792	ppm v/v
Aldeide acetica	СНЗСНО	0,100	12	< 0,100	ppm v/v
Idrocarburi Aromatici Totali	BTX	0,020		< 0,020	ppm v/v
Benzene	C6H6	0,010		< 0.010	ppm v/v
Toluene	C7H8	0,010		< 0,010	ppm v/v
M-xilene	C8H10	0,010		< 0,010	ppm v/v
Anidride Solforosa	SO2	0,020		< 0,020	ppm v/v
Zolfo Totale		0,050		< 0,050	ppm v/v
Solfuro di carbonile	cos	0,020		< 0,020	ppm v/v
Idrogeno solforato	H2S	0,020		< 0,020	ppm v/v
Metilmercaptano	CH4S	0,020		< 0,020	ppm v/v
Solfuro di carbonio TITOLO	CS2	0,020		< 0,020 99,8988	ppm v/v %

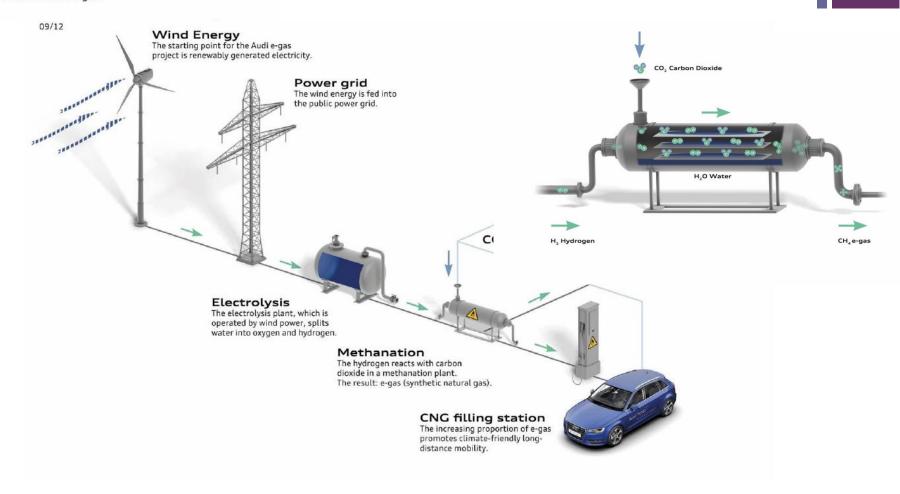
Nome del 1° cromatogramma : B14J2009.470 Nome del report MP2014jOTT20-093510.pro

Controllo tempi di ritenzione effettuato

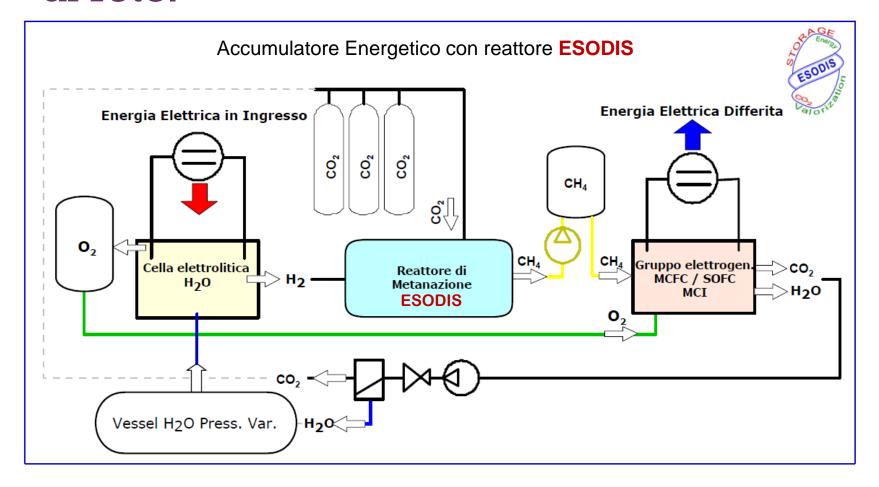
Possibili impieghi della CO₂

- Riutilizzo nel ciclo produttivo della Cantina
- Fissazione con sistemi biologici fotosintetici
- Carbonatazione minerale;
- Industria alimentare
- Processi di raffreddamento
- Metanizzazione tramite Reazione di Sabatier

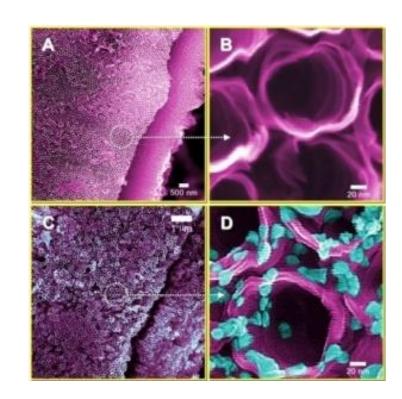
La produzione di combustibili da CO₂


- L'utilizzo della CO₂ come fonte di carbonio è un tema di crescente interesse sia dal punto di vista accademico che industriale.
- Di particolare interesse è la conversione della CO₂ in combustibili liquidi o gassosi, è infatti possibile ottenere principalmente metano quando la CO₂ è sottoposta a trattamento riducente in idrogeno.
- La conversione della CO₂ in combustibile rappresenta una interessante possibilità, che si affianca ai processi di sequestro biologico e o geologico.
- In funzione delle quantità di CO₂ trattata, può diventare importante anche il contributo del metano prodotto.

La reazione di Sabatier

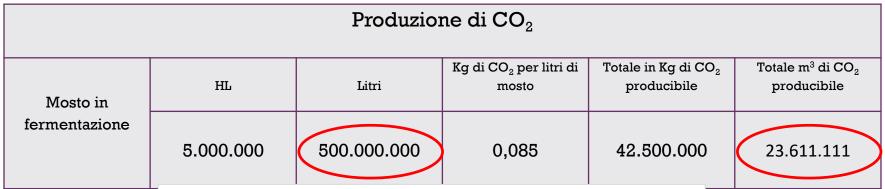

Generation of e-gas

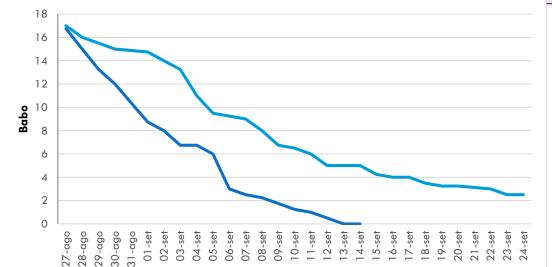
Methanation joins hydrogen and carbon dioxide into water and e-gas.


+

Idrogeno prodotto da elettrolisi sfruttando Energia elettrica in Surplus di rete.

Il futuro dell'idrogeno a basso costo si sposa sempre con le biomasse vitivinicole


- un sistema che produce idrogeno pulito con un risparmio energetico del 60%, grazie all'impiego di elettrodi nanostrutturati e alcol etilico.
- Si tratta di elettrocatalizzatori anodici costituiti da nanoparticelle di palladio, depositati su architetture tridimensionali di nano-tubi di titanio
- grazie ai quali è possibile realizzare elettrolizzatori per produrre idrogeno da soluzioni acquose di alcoli derivoti da biomasse, consumando 18,5 kWh per la produzione di 1 kg di idrogeno, rispetto a 45 KWh per 1 kg di idrogeno prodetto da sola acqua, un grande guadagno energetico ed economico.



http://www.cnr.it/news/index/news/id/5841 francesco.vizza@iccom.cnr.it

Impianto di captazione della CO₂ di fermentazione

In Sicilia ogni anno si spreca e si immette nell'ambiente una quantità di CO_2 considerevole, proveniente dal processo di fermentazione delle cantine presenti in tutto il territorio Siciliano.

+

impianto di captazione della CO₂ di fermentazione

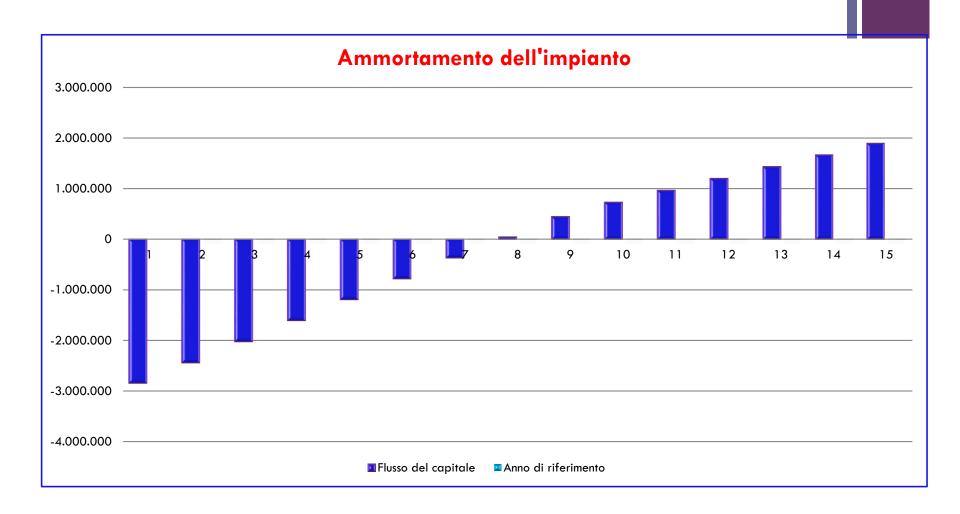

Dati generali relativi al progetto				
Imprese	Cantine Sociali			
Tipo di investimento	Impianto per l'utilizzazione della CO ₂ di fermentazione			
Anno di avvio a realizzazione degli investimenti	2016			
Anno di ultimazione degli investimenti	2017			
Periodo di analisi degli investimenti	15 ANNI			
Dimensione azienda	PMI			
Investimento previsto (senza contrib. pubblici)	€ 2.499.200			

Totale macchinari	€
Impianto recupero compressione CC	1.604.600
Tank di stoccaggio CO ₂ lt.100.000	170.400
Pompa centrifuga per carico cisterne	35.500
Impianto di refrigerazione	71.000
Trasporto	120.700
Analizzatori	284.000
Costi vari ed imprevisti	213.000
Costo totale impianti specifici	€ 2.499.200
IVA (22%)	€ 549.824
TOTALE	€ 3.049.024

+

Impianto di captazione della CO₂ di fermentazione

Caratteristiche dell'impianto				
Produzione oraria	1500 Kg/h	Costo annuo di manutenzione	24.636 €	
Periodo di produzione	1333 h	Costi fissi annui	359.372 €	
	56 giorni	Costi variabili	73.333 €	
	≈ 2 mesi		36.6 €/t	
Potenza impegnata	440 KW	Produzione CO ₂ da fermentazione	2000 t/anno	
Stoccaggio massimo	300000 lt	Costo CO ₂ prodotta	216.3 €/t	
ragusamaric	240000 Kg		0.216 €/Kg	



Impianto di captazione della CO₂ di fermentazione

Le prove di metanazione presso Università Roma3

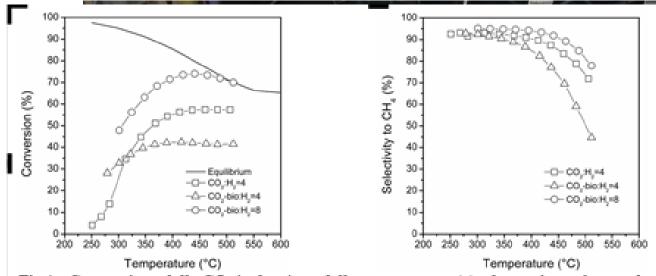


Fig 1.: Conversione della CO₂ in funzione della temperatura (a) e la corrispondente selettività a metano (b).

MPE nel 2015

Figura 46 Valore energetico mensile dell'energia relativa alla mancata produzione eolica nel 2015 [MW]

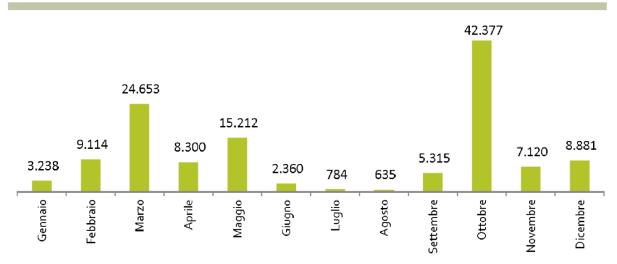


Tabella 49 Evoluzione nel tempo dell'energia relativa alla mancata produzione eolica [MWh]

REGIME COMMERCIALE	2010	2011	2012	2013	2014	2015
RID	348.375	180.421	119.849	73.284	30.146	21.857
Mercato Libero	72.995	44.414	23.267	105.217	66.194	102.989
Cip 6/92	68.783	9.739	6.099	3.228	1.376	3.144
Totale	490.153	234.574	149.215	181.729	97.716	127.989

+ Il futuro in agricoltura è già presente: Trattori a Metano prodotto da Metanazione di CO2

Anche possibile modificare l'attuale parco macchine agricolo con il vantaggio di avere motori bifuels

Audi produce autovetture alimentate gas metano verde

Mario Ragusa Enologo - ragusamario@alice.it

Conclusioni

Le cooperative vitivinicole potrebbe divenire in un prossimo futuro

Leader del cambiamento tecnologico energetico e di innovazione di tutto il mediterraneo e la vitivinicoltura può offrire un contributo importante

Vi ringrazio per l'attenzione