URL sources

ssh -Y [your username]@[your VM ip]
git clone [repo]

clone the repository:

https://github.coml/Istorchi/mpisttest

https://github.com/lstorchi/mpisttest
https://github.com/lstorchi/mpisttest

OpenMPI installation

Source Code to parallelize using MPI

One multi-core (or cluster) computer

A few hundred megabytes of disk space (for compiler)
A few gigabytes of ram (for program examples)

An editor (pick your favorite)

A compiler

An MPI stack

OpenMPI

Preliminary Configuration

» How many cores you have in your unit:

grep ’processor.#*:’ /proc/cpuinfo

| we -1

» How much disk space we have to work with:

df -h ‘pwd®

» Make ourselves a workspace:

mkdir “/workspace
cd "“/workspace

» How much physical RAM we have:

grep "MemTotal:" /proc/meminfo

Testing the compiler

apt-get install build-essential

#include "stdio.h"

int main(int argc, char =*xargv[])
{

printf ("hello MPI user!\n");
return (0) ;

}

gcc hello.c -o hello
./hello

OpenMPI installation

S wget
https://www.open-mpi.org/software/ompi/v2.1/downloads/openmp
i-2.1.1.tar.gz

$ cd workspace/

$ tar zxvf ../openmpi-2.1.1.tar.gz

S mkdir /home/S$SUSER/local/

$./configure --prefix=/home/$USER/local/
--enable-mpirun-prex-by-default --enable-static

$ make -j4

S make install

MPI

Now that we have an operational MPI stack, we can start to
explore MPI. At its core, MPI is a set of function calls and libraries
that implement a distributed execution of a program.

Distributed does not necessarily mean that you must run your MPI

job on many machines. In fact, you could run multiple MPI
processes 1n your single Openstack VM

Processes do not share the same memory address space so if one
process makes a change to a variable, then none of the other
processes can see that change. If you want another process to be

aware of the change, you have to explicitly communicate this
information over to the other process.

MPI

MPI operates via function calls, t o initialize the MPI environment,
you need to include some function calls in your code. The following
are typically used:

|
/#+ add in MPI startup routines #/

/* 1st: launch the MPIl processes on each node
MPI_Init(kargec , Bargv);

/% 2nd: request a thread id, sometimes called
"rank" from

tha MPI master process, which has rank or tid
#

MPI_Comm_rank (MPI_COMM_WORLD ,

/* 3rd: this is often useful, get the number of
threads

or processes launched by MPI, this should be
NCPUs -1

i

MPI_Comm_size (MPI_CUOMM_WORLD, &nthreads);

#inpclude "stdio.h"
#include <stdlib.h>

#include <mpi.h>
int main(int argc,

{

char ®argv[])

int ftid,nthreads;
char #cpu_name;

f=

:_.-’ *

add in MPI startup Toutines
isit: Tatnch the MPI

MPI _Init (kargc ,kargv);

Process

I *
the
- IJ

MPI _Comm_rank (MPI_COMM_WORLD ,

Z2nd : 1est 3 I S 8
MPT =1 i which

f=
ar p

)
*/

MPI_Comm_size(MPI_COMM_WORLD,

T often use
T

i
YCESE lannched: by

—

/#* on EVERY pr
Cpu_name =

a'.-l locate

..Ab.-

FE
gt 1ea
gethostno

+
g ks s

Tt the

tname (cpu_name ,80) ;

printf("hello MPI user:
tid, cpu_name, nthreads);
MPI _Fimalize():

return (0);

oe
(char *)calleoc {80,

from process

./

28 oL

o : A

imes
h ran

E

Etid) ;

number
be

get: the
this should

knthreads);

for

the machine name
izeof {char));

sSpace

%1 on machine=%s, of NCPU=¥i

processes\n",

Makefile

Makefile.hello-mpi

#4## Bazic Makefile for MPI

Ge /home/[username]/local/bin/mpicc
CFLAGS -g —-00

LD /home/[username]/local/bin/mpicc
LDFLAGS et o3

PROGRAM hello-mpi

all: ${PROGRAM}

${PROGRAM}+: ${PROGRAM}.0
${LD} ${LDFLAGS} $< -o ${PROGRAM}

${PROGRAM}.0: ${PROGRAM}.cC
${CC} ${CFLAGS} -c $< -o ${PROGRAM}.o

clean:
rm —-f ${PROGRAM}.o ${PROGRAM}

With this Makefile, we can automate the build and rebuild of
these programs.

Makefile

Now just type make to compile the code:

This should result in:

/home/ joe/local/bin/mpice -g -00 -c hello-mpi.c -o hello-mpi.o
/home/ joe/local/bin/mpicc -g hello-mpi.o -o hello-mpi

and a working binary executable called hello-mpi.

To run the binary, use the mpirun command:

/home/[usernamel]/local/bin/mpirun -np 8 -hostfile hostfile
./hello-mpi

Compute Pl using a Monte Carlo
‘Approach

A circle of radius R is inscribed inside a square with side length 2*R, if so
the area of the circle will be A_= PI*R? and the area of the square will be

= (2*R). So the ratio of the area of the circle to the area of the square
w111 be A /A =Pl/A4.

et Ll : If a program picks N points (x, y) at

" random inside the square. If a point is
inside the circle (i.e. if x* + y* <R*) M
is incremented by one.

Thus finally: PI=-4*M /N

As = (2r)? = 4x?

it)
i)
A

Pseudo code

N = 2000
circle count = 0
for i =1 to N
X random value (0.0, 1.0)
y = random value (0.0, 1.0)
if x2 + y2 < 1.0
circle count = circle count + 1
endif
endfor
pi = 4 * (circle count / N)

Parallel version

e Each one of the P MPI processes will generate N/P
random points (clue each process should use a different
seed)

e You need to sum the final value of circle count (you
may need to use the MPI Reduce)

e As n the serial code you may now estimate the PI value

e N could be a command line argument

Exercise

e Implement the serial version of the code starting from
the pseudo code (suggestion the number of random
points can be a command line argument)

Implement the parallel version and, depending on the

number of cores of the VM you are using, calculate the
speedup (MPI_Wtime() Returns time in seconds
since an arbitrary time in the past. clock t
clock(void) returns the number of clock ticks
elapsed since the program was launched. To
get the number of seconds used by the CPU,
you need to divide by CLOCKS PER_SEC.)

MPI functions (C API)

MPI Init (&argc, &argv);

MPI Comm size (MPI_ COMM WORLD, &size);
MPI Comm rank (MPI COMM WORLD, &rank);
MPI Barrier (MPI_ COMM WORLD) ;

MPI Reduce (&circle count, &t circle count,
1, MPI_INT, MPI SUM, 0, MPI COMM WORLD) ;

MPI Finalize ();

Broadcast

We will explore the differences between a naive approach to perform a
broadcast and a more sophisticated one

Naive (flat tree) need n-1 point to point communications, T(msize) = time
to send a message of size msize, so Time = (n-1) * T(msize) so O(n)

o L
T1 Ji
i 2

N

Tn

Broadcast

Now using a binary tree we are able to reduce the
communication time (Time = O(log,(n)))

Q. .
/

}D

& @

V4
I3/ T4
S

F

s &

Bcast pseudocode

fromrank = (int) ((myrank-1)/2)

if (myrank > 0)
Recv data from fromrank

torankl = 2 * myrank + 1;
torank?2 2 * myrank + 2;

1f (torankl < size)

Send data to torankl
i1f (torank2 < size)

Send data to torank2

Exercise

e Implement the two version of the broadcast the one
using the flat tree and the other using the binary tree.
You will breadcast 1n both cases a vector of dimension
N , where N again could be a command line argument.

MPI functions (C API)

e int MPI Send(const void “*buf, int
count, MPI Datatype datatype, int
dest, int tag,
MPI Comm comm)

MPI Send (sbuf, bufdim, MPI DOUBLE,
torankl, torankl, MPI COMM WORLD) ;

MPI functions (C API)

e int MPI Recv(void *buf, 1int count,
MPI Datatype datatype, 1int source,

int tag, MPI Comm comm, MPI Status
*status)

MPI_Status status;

MPI Recv (sbuf, bufdim, MPI DOUBLE,

fromrank, myrank, MPI COMM WORLD,
&status) ;

MPI complexity

wold mein bl ange, char *argv])
{
il Tk, ST

MFI_inil Aargo, Sangul

MEP_Comm_ran k{MPM_COMM_WORL D, & myrank];
MPI_Comm_size MP|_COMM WORLD, Ssize]

e intH "Processer %l of %l Hoblo Woeeldn®, myean k, siee]
;IH_Hlil:il

Example of Parallel Communications Overhead
and Complexity: actual caligraph from the simple
parallel "hello world" program shown. Most of the
routines are from communications libranes.

Serial code optimization

Parallel computing era, however to be cache friendly:

for (i=0; i<N; i++)
for (j=0; j<N; j++)
for (k=0; k<N; k++)
c[i][j] = c[i]1[]J] + alil[k] * b[k][]]~

for (i=0; i<N; i++)
for (k=0; k<N; k++)
for (j=0; IJ<N; J++)
c[i][J] = c[i][]J] + ali]l[k] * b[k][]]~

Serial code optimization

redolibanguo serialop
Time to initialize 0.050375 s=s.
Time 10.007438 s.
Total time 10.057895 =.

> 213.512236
> 268364458 .846206
[redofbanguo serialopt (master)l$./mm.3
Time to initialize 0.027267 s.
Time 2.971154 s=s.
Total time 2.998506 s.

> 716.184543
> 268364458 .846206

[redoibangquo serialopt (master)]5 diff mm.l.c mm.3.c
37,38¢37 38

for {(3=0; 3<H; J++)
for (k=0; k<NHN; k++)

for {(k=0; k<H; k++)
for (3=0; J<N; J++)

Serial code optimization

Keep the pipeline full, loop unrolling:

for (1=0; i<N; i++) {
for (k=0; k<N; k++) {
for (j=0; j<N; j +=8) {
c[1][J] = cl[1][3J] + ali]l[k] * b[k][]J]~

c[i] [J+1]
c[i] [j+2]
c[i] [J+3]
c[i] [J+4]
c[1] [J+3]
c[i] []+6]
c[i1] [J+7]

c[i] [J+1]
c[i] [j+2]
c[i] [J+3]
c[i] [J+4]
c[i1] [J+3]
c[i] [j+6]
c[1] [J+7]

+

a[i] [k]
af[i] [k]
a[i] [k]
a[i] [k]
a[i] [k]
a[i] [k]
af[i] [k]

*

b[k][j+1];
b[k] [j+2];
b[k][j+3];
blk][]+4];
blk] []+3];
b[k][j+6];
blk] []+7];

MPI LIBRARY

Standard: MPI Send Standard: MPI Isend
sracronous: o1_seen

Buffered: MPI_Bsend Buffered: MPI_Ibsend

RECEIVE: MPI_Recv RECEIVE: MPI Irecv

MPI LIBRARY

COLLECTIVE COMM.

| One 1o Al I

MPI_Reduce -IHFI_ch st MPI_Barrier
MPI Gather -1 MPI Scatter MPI All reduce
MPI Gatherv —lHPI_Enattarv MPI All gather

