
URL sources

ssh -Y [your username]@[your VM ip]

git clone [repo]

clone the repository:

https://github.com/lstorchi/mpisttest

https://github.com/lstorchi/mpisttest
https://github.com/lstorchi/mpisttest

OpenMPI installation

● Source Code to parallelize using MPI
● One multi-core (or cluster) computer
● A few hundred megabytes of disk space (for compiler)
● A few gigabytes of ram (for program examples)
● An editor (pick your favorite)
● A compiler
● An MPI stack
● OpenMPI

Preliminary Configuration

Testing the compiler

apt-get install build-essential

OpenMPI installation

$ wget
https://www.open-mpi.org/software/ompi/v2.1/downloads/openmp
i-2.1.1.tar.gz

$ cd workspace/

$ tar zxvf ../openmpi-2.1.1.tar.gz

$ mkdir /home/$USER/local/

$./configure --prefix=/home/$USER/local/
--enable-mpirun-prex-by-default --enable-static

$ make -j4

$ make install

MPI

Now that we have an operational MPI stack, we can start to
explore MPI. At its core, MPI is a set of function calls and libraries
that implement a distributed execution of a program.

Distributed does not necessarily mean that you must run your MPI
job on many machines. In fact, you could run multiple MPI
processes in your single Openstack VM

Processes do not share the same memory address space so if one
process makes a change to a variable, then none of the other
processes can see that change. If you want another process to be
aware of the change, you have to explicitly communicate this
information over to the other process.

MPI
MPI operates via function calls, t o initialize the MPI environment,
you need to include some function calls in your code. The following
are typically used:

Makefile

Makefile

Now just type make to compile the code:

Compute PI using a Monte Carlo
Approach
A circle of radius R is inscribed inside a square with side length 2*R, if so
the area of the circle will be Ac = PI*R2 and the area of the square will be
As = (2*R)2. So the ratio of the area of the circle to the area of the square
will be Ac / As = PI/4.

If a program picks N points (x, y) at
random inside the square. If a point is
inside the circle (i.e. if x2 + y2 < R2) M
is incremented by one.

Thus finally: PI =- 4 * M / N

Pseudo code

N = 2000
circle_count = 0
for i = 1 to N
 x = random value (0.0, 1.0)
 y = random value (0.0, 1.0)
 if x2 + y2 < 1.0
 circle_count = circle_count + 1
 endif
endfor
pi = 4 * (circle_count / N)

Parallel version

● Each one of the P MPI processes will generate N/P
random points (clue each process should use a different
seed)

● You need to sum the final value of circle_count (you

may need to use the MPI_Reduce)

● As in the serial code you may now estimate the PI value

● N could be a command line argument

Exercise

● Implement the serial version of the code starting from
the pseudo code (suggestion the number of random
points can be a command line argument)

● Implement the parallel version and, depending on the
number of cores of the VM you are using, calculate the
speedup (MPI_Wtime() Returns time in seconds
since an arbitrary time in the past. clock_t
clock(void) returns the number of clock ticks
elapsed since the program was launched. To
get the number of seconds used by the CPU,
you need to divide by CLOCKS_PER_SEC.)

MPI functions (C API)

● MPI_Init (&argc, &argv);

● MPI_Comm_size (MPI_COMM_WORLD, &size);

● MPI_Comm_rank (MPI_COMM_WORLD, &rank);

● MPI_Barrier (MPI_COMM_WORLD);

● MPI_Reduce (&circle_count, &t_circle_count,
1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);

● MPI_Finalize ();

Broadcast

We will explore the differences between a naive approach to perform a
broadcast and a more sophisticated one

Naive (flat tree) need n-1 point to point communications, T(msize) = time
to send a message of size msize, so Time = (n-1) * T(msize) so O(n)

Broadcast

Now using a binary tree we are able to reduce the
communication time (Time = O(log2(n)))

Bcast pseudocode

fromrank = (int) ((myrank-1)/2)

if (myrank > 0)
 Recv data from fromrank

torank1 = 2 * myrank + 1;
torank2 = 2 * myrank + 2;

if (torank1 < size)
 Send data to torank1
if (torank2 < size)
 Send data to torank2

Exercise

● Implement the two version of the broadcast the one
using the flat tree and the other using the binary tree.
You will breadcast in both cases a vector of dimension
N , where N again could be a command line argument.

MPI functions (C API)

● int MPI_Send(const void *buf, int
count, MPI_Datatype datatype, int
dest, int tag,
MPI_Comm comm)

MPI_Send (sbuf, bufdim, MPI_DOUBLE,
torank1, torank1, MPI_COMM_WORLD);

MPI functions (C API)

● int MPI_Recv(void *buf, int count,
MPI_Datatype datatype, int source,
int tag, MPI_Comm comm, MPI_Status
*status)

MPI_Status status;

MPI_Recv (sbuf, bufdim, MPI_DOUBLE,
fromrank, myrank, MPI_COMM_WORLD,
&status);

MPI complexity

Serial code optimization

Parallel computing era, however …. to be cache friendly:

 for (i=0; i<N; i++)
 for (j=0; j<N; j++)
 for (k=0; k<N; k++)
 c[i][j] = c[i][j] + a[i][k] * b[k][j];

 for (i=0; i<N; i++)
 for (k=0; k<N; k++)
 for (j=0; j<N; j++)
 c[i][j] = c[i][j] + a[i][k] * b[k][j];

Serial code optimization

Serial code optimization

Keep the pipeline full, loop unrolling:

 for (i=0; i<N; i++) {
 for (k=0; k<N; k++) {
 for (j=0; j<N; j +=8) {
 c[i][j] = c[i][j] + a[i][k] * b[k][j];
 c[i][j+1] = c[i][j+1] + a[i][k] * b[k][j+1];
 c[i][j+2] = c[i][j+2] + a[i][k] * b[k][j+2];
 c[i][j+3] = c[i][j+3] + a[i][k] * b[k][j+3];
 c[i][j+4] = c[i][j+4] + a[i][k] * b[k][j+4];
 c[i][j+5] = c[i][j+5] + a[i][k] * b[k][j+5];
 c[i][j+6] = c[i][j+6] + a[i][k] * b[k][j+6];
 c[i][j+7] = c[i][j+7] + a[i][k] * b[k][j+7];
 }
 }
 }

