School on Open Science Cloud -Quantum Dynamics I

> S Rampino 7 June 2017

I. Introduction

II. Potential energy surface

III. Coordinates

IV. Reaction dynamics

V. Applications

Dynamics of gas-phase elementary processes in the quantum regime

Sergio Rampino

Scuola Normale Superiore sergio.rampino@sns.it

Perugia, 7 June 2017

School on Open Science Cloud -Quantum Dynamics I

> S Rampino 7 June 2017

I. Introduction

- 1. A + BC reactions
- 2. Crossed molecular beams
- 3. Dynamics and kinetics
- II. Potential energy surface
- III. Coordinates
- IV. Reaction dynamics
- V. Applications

I. Introduction

School on Open Science Cloud -Quantum Dynamics I

> S Rampino 7 June 2017

. Introduction

1. A + BC reactions

2. Crossed molecular beams

3. Dynamics and kinetics

II. Potential energy surface

III. Coordinates

IV. Reaction dynamics

V. Applications

$A \text{ + BC} \rightarrow AB \text{ + C}$

School on Open Science Cloud -Quantum Dynamics I

> S Rampino 7 June 2017

. Introduction

1. A + BC reactions

2. Crossed molecular beams

3. Dynamics and kinetics

II. Potential energy surface

III. Coordinates

IV. Reaction dynamics

School on Open Science Cloud -Quantum Dynamics I

> S Rampino 7 June 2017

. Introduction

1. A + BC reactions

2. Crossed molecular beams

3. Dynamics and kinetics

II. Potential energy surface

III. Coordinates

IV. Reaction dynamics

School on Open Science Cloud -Quantum Dynamics I

> S Rampino 7 June 2017

. Introduction

1. A + BC reactions

2. Crossed molecular beams

3. Dynamics and kinetics

II. Potential energy surface

III. Coordinates

IV. Reaction dynamics

School on Open Science Cloud -Quantum Dynamics I

> S Rampino 7 June 2017

I. Introduction

1. A + BC reactions

2. Crossed molecular beams

3. Dynamics and kinetics

II. Potential energy surface

III. Coordinates

IV. Reaction dynamics

V. Applications

Atom-diatom collisions

Atom A colliding with molecule BC (in a given vibro-rotational state v_{ij}) with a certain velocity and impact parameter b

School on Open Science Cloud -Quantum Dynamics I

> S Rampino 7 June 2017

I. Introduction

1. A + BC reactions

2. Crossed molecular beams

3. Dynamics and kinetics

II. Potential energy surface

III. Coordinates

IV. Reaction dynamics

V. Applications

Atom-diatom collisions

Atom A colliding with molecule BC (in a given vibro-rotational state $v_{,j}$) with a certain velocity and impact parameter b

Reaction cross section

$$\sigma_{\mathrm{v},\mathrm{j}}=\pi b_{\mathrm{max}}^2 rac{N_{\mathrm{v},\mathrm{j}}^{\mathrm{R}}}{N_{\mathrm{v},\mathrm{j}}}$$

I. Introduction

2. Crossed molecular beams

School on Open Science Cloud -Quantum Dynamics I

> S Rampino 7 June 2017

. Introduction

1. A + BC reactions

2. Crossed molecular beams

Dynamics and kinetics

II. Potential energy surface

III. Coordinates

IV. Reaction dynamics

I. Introduction

2. Crossed molecular beams

School on Open Science Cloud -Quantum Dynamics I

> S Rampino 7 June 2017

I. Introduction

1. A + BC reactions

2. Crossed molecular beams

 Dynamics and kinetics

II. Potential energy surface

III. Coordinates

IV. Reaction dynamics

V. Applications

Crossed-molecular-beam machine at Perugia (Prof. Casavecchia)

I. Introduction

3. Dynamics and kinetics

School on Open Science Cloud -Quantum Dynamics I

S Rampino 7 June 2017

I. Introduction

1. A + BC reactions

2. Crossed molecular beams

 Dynamics and kinetics

II. Potential energy surface

III. Coordinates

IV. Reaction dynamics

V. Applications

Atom-diatom collisions

Atom A colliding with molecule BC (in a given vibro-rotational state v,j) with a certain velocity and impact parameter \boldsymbol{b}

Reaction cross section

Thermal rate coefficient

$$k_{\mathrm{v},\mathrm{j}}(\mathrm{T}) = \langle \mathrm{v}
angle \sigma_{\mathrm{v},\mathrm{j}} = \sqrt{\frac{8k_{\mathrm{B}}\mathrm{T}}{\pi\mu}} \pi b_{\mathrm{max}}^2 \frac{N_{\mathrm{v},\mathrm{j}}^{\mathrm{R}}}{N_{\mathrm{v},\mathrm{j}}}$$

$$\sigma_{\rm v,j} = \pi b_{\rm max}^2 \frac{N_{\rm v,j}^{\rm R}}{N_{\rm v,j}}$$

School on Open Science Cloud -Quantum Dynamics I

> S Rampino 7 June 2017

I. Introduction

II. Potential energy surface

4.

Born-Oppenheimer approximation

5. Analytic formulations

6. Representations

III. Coordinates

IV. Reaction dynamics

V. Applications

II. Potential energy surface

4. Born-Oppenheimer approximation

Schrödinger equation for a molecular system

$$i\hbar \frac{\partial}{\partial t} \Psi(\boldsymbol{\xi}, t) = \hat{H} \Psi(\boldsymbol{\xi}, t)$$

where $\pmb{\xi}$ is the set of nuclear (**q**) and electronic (**Q**) coordinates

Closed form solution for for very simple models only

School on Open Science Cloud -Quantum Dynamics I

> S Rampino 7 June 2017

I. Introduction

II. Potential energy surface

4. Born-Oppenheimer approximation

5. Analytic formulations

6. Representations

II. Coordinates

IV. Reaction dynamics

4. Born-Oppenheimer approximation

Born-Oppenheimer approximations: the grounds

Electrons are 1822 times ligher than the protons and neutrons constituting the nuclei

Underlying assumption:

The electrons rearrange instantaneously around the moving nuclei (electronically adiabatic approximation)

School on Open Science Cloud -Quantum Dynamics I

> S Rampino 7 June 2017

I. Introduction

II. Potential energy surface

4. Born-Oppenheimer approximation

5. Analytic formulations

6. Representations

III. Coordinates

IV. Reaction dynamics

4. Born-Oppenheimer approximation

Due to the Born-Oppenheimer approimation, expand Ψ

$$\Psi(\mathbf{q},\mathbf{Q},t)=\sum_{n}^{\infty}\psi_{n}(\mathbf{q},t)\phi_{n}(\mathbf{Q};\mathbf{q})$$

and rewrite the Schrödinger equation

$$i\hbar\frac{\partial}{\partial t}\sum_{n}\psi_{n}(\mathbf{q},t)\phi_{n}(\mathbf{Q};\mathbf{q})=\left[\hat{T}_{\mathbf{q}}+\hat{V}\right]\sum_{n}\psi_{n}(\mathbf{q},t)\phi_{n}(\mathbf{Q};\mathbf{q})$$

School on Open Science Cloud -Quantum Dynamics I

> S Rampino 7 June 2017

I. Introduction

II. Potential energy surface

4. Born-Oppenheimer approximation

5. Analytic formulations

6. Representations

III. Coordinates

IV. Reaction dynamics

V. Applications

where $\hat{H}=\hat{T}_{\mathbf{q}}+\hat{V}$

4. Born-Oppenheimer approximation

Electronic structure: ϕ 's eigensolution of

$$\hat{\mathbb{V}}\phi_n(\mathbf{Q};\mathbf{q}) = \mathbb{V}_n(\mathbf{q})\phi_n(\mathbf{Q};\mathbf{q})$$

Nuclear dynamics: B-O equation of motion

$$i\hbar \frac{\partial}{\partial t}\psi(\mathbf{q},t) = \left[\hat{T}_{\mathbf{q}}(\mathbf{q}) + V(\mathbf{q})\right]\psi(\mathbf{q},t)$$

School on Open Science Cloud -Quantum Dynamics I

> S Rampino 7 June 2017

I. Introduction

II. Potential energy surface

4. Born-Oppenheimer approximation

5. Analytic formulations

6. Representations

III. Coordinates

IV. Reaction dynamics

where n = 0 (dynamics on the electronic ground state) has been dropped

4. Born-Oppenheimer approximation

Nuclei move on the Potential Energy Surface $\forall(\mathbf{q})$

$$i\hbar \frac{\partial}{\partial t}\psi(\mathbf{q},t) = \left[\hat{T}_{\mathbf{q}}(\mathbf{q}) + V(\mathbf{q})\right]\psi(\mathbf{q},t)$$

the ensemble of the values $V_n({\bm q})$ of the energy of the nth electronic state at all nuclear geometries

School on Open Science Cloud -Quantum Dynamics I

> S Rampino 7 June 2017

I. Introduction

II. Potential energy surface

4. Born-Oppenheimer approximation

5. Analytic formulations

6. Representations

III. Coordinates

IV. Reaction dynamics

5. Analytic formulations

Aguado-Paniagua global fitting scheme

$$\forall (r_1, r_2, r_3) = \forall_1^{(2)}(r_1) + \forall_2^{(2)}(r_2) + \forall_3^{(2)}(r_3) + \forall^{(3)}(r_1, r_2, r_3)$$

$$\begin{aligned} & \forall^{(2)}(r) = c_0 \frac{e^{-\alpha r}}{r} + \sum_{i=1}^{l} c_i (re^{-\gamma^{(2)} r})^i \\ & \forall^{(3)}(r_1, r_2, r_3) = \sum_{i=1}^{M} d_{ijk} (r_1 e^{-\gamma^{(3)}_1 r_1})^j (r_2 e^{-\gamma^{(3)}_2 r_2})^j (r_3 e^{-\gamma^{(3)}_3 r_3})^k \end{aligned}$$

 $i+j+k \neq i \neq j \neq k \qquad \qquad i+j+k \leq M$

Many-body-expansion polynomial formulation

ijk

School on Open Science Cloud -Quantum Dynamics I

> S Rampino 7 June 2017

I. Introduction

II. Potential energy surface

4. Born-Oppenheimer approximation

5. Analytic formulations

6. Representations

III. Coordinates

IV. Reaction dynamics

II. Potential energy surface 5. Analytic formulations

Shepard interpolation scheme

$$V(\mathbf{q}) = \sum_{i=1}^{N_{\mathsf{Sh}}} w_i(\mathbf{q}) T_i(\mathbf{q})$$

$$T_{i}(\mathbf{q}) = V_{i} + \sum_{\alpha=1}^{N_{q}} \Delta q_{\alpha} \frac{\partial V}{\partial q_{\alpha}} \bigg|_{i} + \frac{1}{2!} \sum_{\alpha=1}^{N_{q}} \sum_{\beta=1}^{N_{q}} \Delta q_{\alpha} \Delta q_{\beta} \frac{\partial^{2} V}{\partial q_{\alpha} \partial q_{\beta}} \bigg|_{i}$$
$$w_{i} = \frac{1}{d_{i}} / \sum_{j=1}^{N_{sh}} w_{j} \qquad \qquad d_{i} = \sqrt{\sum_{\alpha=1}^{N_{q}} (\Delta q_{\alpha})^{2}}$$

School on Open Science Cloud -Quantum Dynamics I

> S Rampino 7 June 2017

I. Introduction

II. Potential energy surface

4. Born-Oppenheimer approximation

5. Analytic formulations

6. Representations

III. Coordinates

IV. Reaction dynamics

V. Applications

Weighed sum of second-order Taylor expansions around a set of N_{Sh} electronic energies

6. Representations

Many-body expansion

$$\begin{split} & \forall (n, r_2, r_3) = \\ & \forall_1^{(2)}(n) + \forall_2^{(2)}(r_2) + \forall_3^{(2)}(r_3) + \\ & \forall^{(3)}(n, r_2, r_3) \end{split}$$

Configuration-space sampling

f = 2 10-point SRBO grids 5-point angular grid

Ab initio

PC-NEVPT2/CASSCF DKH Hamiltonian ANO-RCC basis set

Fitting

775 ab initio energies 6th-degree polynomial fit for two-body terms 7th-degree polynomial fit for three-body term

School on Open Science Cloud -Quantum Dynamics I

> S Rampino 7 June 2017

. Introduction

II. Potential energy surface

4. Born-Oppenheimer approximation

5. Analytic formulation:

6. Representations

III. Coordinates

IV. Reaction dynamics

School on Open Science Cloud -Quantum Dynamics I

> S Rampino 7 June 2017

I. Introduction

II. Potential energy surface

III. Coordinates

7. Arrangement and process coordinates

8. PES representations

9. Configuration-space sampling

IV. Reaction dynamics

V. Applications

III. Coordinates

7. Arrangement and process coordinates

School on Open Science Cloud -Quantum Dynamics I

> S Rampino 7 June 2017

I. Introduction

II. Potential energy surface

III. Coordinates

7. Arrangement and process coordinates

8. PES representations

9. Configuration-space sampling

IV. Reaction dynamics

V. Applications

Bond lengths (BL)

- * the BC (reactant) internuclear distance r_{BC}
- * the AB (product) internuclear distance r_{AB}
- * the angle formed by r_{BC} and r_{AB}

- * ``process'' coordinates
- * non orthogonal coordinates
- st commonly employed in PES representations and inspection

7. Arrangement and process coordinates

School on Open Science Cloud -Quantum Dynamics I

> S Rampino 7 June 2017

I. Introduction

II. Potential energy surface

III. Coordinates

7. Arrangement and process coordinates

8. PES representations

9. Configuration-space sampling

IV. Reaction dynamics

V. Applications

Reactant (and product) Jacobi coordinates

- * the BC (reactant) internuclear distance r
- * the A-BC distance R
- * the angle Θ formed by R and r

- * "arrangement" coordinates
- * orthogonal coordinates
- * used in wavepacket TD methods

7. Arrangement and process coordinates

School on Open Science Cloud -Quantum Dynamics I

> S Rampino 7 June 2017

I. Introduction

II. Potential energy surface

II. Coordinates

7. Arrangement and process coordinates

8. PES representations

9. Configuration-space sampling

IV. Reaction dynamics

V. Applications

Delves hyperspherical coordinates

- * ``arrangement'' coordinates
- * orthogonal coordinates
- * used in hyperspherical TI methods

7. Arrangement and process coordinates

School on Open Science Cloud -Quantum Dynamics I

> S Rampino 7 June 2017

I. Introduction

II. Potential energy surface

III. Coordinates

7. Arrangement and process coordinates

8. PES representations

9. Configuration-space sampling

IV. Reaction dynamics

V. Applications

Bond Order (BL) coordinates

*
$$n_{BC} = e^{-\beta_{BC}(r_{BC}-r_{eqBC})}$$

*
$$n_{AB} = e^{-\beta_{AB}(r_{AB} - r_{eqAB})}$$

 * the angle formed by $\mathit{r_{AB}}$ and $\mathit{r_{BC}}$

- * ``process'' coordinates
- * non orthogonal coordinates
- * physical space inverted and confined in a finite volume

7. Arrangement and process coordinates

School on Open Science Cloud -Quantum Dynamics I

> S Rampino 7 June 2017

8. PES representations

Many-body expansion

$$\begin{split} & \forall (r_1, r_2, r_3) = \\ & \forall_1^{(2)}(r_1) + \forall_2^{(2)}(r_2) + \forall_3^{(2)}(r_3) + \\ & \forall^{(3)}(r_1, r_2, r_3) \end{split}$$

Configuration-space sampling

f = 2 10-point SRBO grids 5-point angular grid

Ab initio

PC-NEVPT2/CASSCF DKH Hamiltonian ANO-RCC basis set

Fitting

775 ab initio energies V. Appl 6th-degree polynomial fit for two-body terms 7th-degree polynomial fit for three-body term

School on Open Science Cloud -Quantum Dynamics I

> S Rampino 7 June 2017

I. Introduction

II. Potential energy surface

III. Coordinates

7. Arrangement and process coordinates

8. PES representations

9. Configuration-space sampling

IV. Reaction dynamics

8. PES representations

Rectangular relaxed plot

reaction coordinate $\eta = \arctan\left(r_{\rm CH}/r_{\rm CC}
ight)$

angular coordinate $\Phi = \widehat{\mathsf{CCH}}$

overall-size coordinate $\rho = (r_{CH}^2 + r_{CC}^2)^{1/2}$

 $\operatorname{\mathsf{RRX}}_{\substack{\rho\\\rho}}\operatorname{plot}$

School on Open Science Cloud -Quantum Dynamics I

> S Rampino 7 June 2017

I. Introduction

II. Potential energy surface

III. Coordinates

7. Arrangement and process coordinates

8. PES representations

9. Configuration-space sampling

IV. Reaction dynamics

V. Applications

8. PES representations

Reaction paths
path 1: collinear MEP
$C + CH^+ \to CCH^+ \to C_2^+ + H$
path 2: absolute MEP
$C + CH^+ \rightarrow CCH^+ \rightarrow HCC^+ \rightarrow H + C_2^+$

School on Open Science Cloud -Quantum Dynamics I

> S Rampino 7 June 2017

I. Introduction

II. Potential energy surface

III. Coordinates

7. Arrangement and process coordinates

8. PES representations

9. Configuration-space sampling

IV. Reaction dynamics

V. Applications

8. PES representations

School on Open Science Cloud -Quantum Dynamics I

> S Rampino 7 June 2017

I. Introduction

II. Potential energy surface

II. Coordinates

7. Arrangement and process coordinates

8. PES representations

9. Configuration-space sampling

IV. Reaction dynamics

V. Applications

8. PES representations

School on Open Science Cloud -Quantum Dynamics I

> S Rampino 7 June 2017

V. Applications

9. Configuration-space sampling

School on Open Science Cloud -Quantum Dynamics I

> S Rampino 7 June 2017

I. Introduction

II. Potential energy surface

III. Coordinates

7. Arrangement and process coordinates

8. PES representations

9. Configuration-space sampling

IV. Reaction dynamics

V. Applications

9. Configuration-space sampling

School on Open Science Cloud -Quantum Dynamics I

S Rampino 7 June 2017

SRBO approach

$$n = e^{-\beta(r-r_e)}$$

Configuration-space sampling

IV Reaction

V. Applications

9. Configuration-space sampling

School on Open Science Cloud -Quantum Dynamics I

S Rampino 7 June 2017

SRBO approach

switch from BL to BO space introduce space-reduction param

$$n = e^{-\beta(r-r_e)}$$

 $f = \frac{1 - n_{\min}}{n_{\max} - 1} = \frac{1 - e^{-\beta(r_{\max} - r_e)}}{e^{-\beta(r_{\min} - r_e)} - 1}$

Configuration-space sampling

dynamics

V. Applications

9. Configuration-space sampling

School on Open Science Cloud -Quantum Dynamics I

S Rampino 7 June 2017

SRBO approach

switch from BL to BO space introduce space-reduction param f

$$n = e^{-\beta(r-r_e)}$$

$$f = \frac{1 - n_{\min}}{n_{\max} - 1} = \frac{1 - e^{-\beta(r_{\max} - r_e)}}{e^{-\beta(r_{\min} - r_e)} - 1}$$

Configuration-space sampling

IV. Reaction dynamics

V. Applications

9. Configuration-space sampling

School on Open Science Cloud -Quantum Dynamics I

S Rampino 7 June 2017

SRBO approach

switch from BL to BO space introduce space-reduction param f

$$n = e^{-\beta(r-r_e)}$$

$$f = \frac{1 - n_{\min}}{n_{\max} - 1} = \frac{1 - e^{-\beta(r_{\max} - r_e)}}{e^{-\beta(r_{\min} - r_e)} - 1}$$

9. Configuration-space sampling

IV. Reaction dynamics

V. Applications

School on Open Science Cloud -Quantum Dynamics I

> S Rampino 7 June 2017

I. Introduction

II. Potential energy surface

III. Coordinates

IV. Reaction dynamics

10. Quasi-classical trajectories

11. Quantum time-dependent

12. Quantum time-independent

V. Applications

IV. Reaction dynamics

IV. Reaction dynamics 10. Quasi-classical trajectories

QCT calculations

Nuclei move classically on the PES Quantization introcued at some degree

Trajectory

impact parameter b collision energy E_{tr} atom-diatom orientation angles diatom's quantum-like internal states (v, j)

 $N_{v,j}(E_{tr}, b)$: total trajectories $N_{v,i}^{R}(E_{tr}, b)$: reactive trajectories

Outcomes

 $\begin{array}{l} \text{opacity function} \\ P_{v,j}(E_{tr},b) = \frac{N_{v,j}^{R}(E_{tr},b)}{N_{v,j}(E_{tr},b)} \end{array} \end{array} \end{array} \label{eq:prod}$

reactive probability $P_{v,j}(E_{tr}) = \frac{N_{v,j}^{R}(E_{tr})}{N_{v,j}(E_{tr})}$

cross section $\sigma_{
m v,j}=\pi b_{
m max}^2 rac{N_{
m v,j}^{
m R}}{N_{
m v,j}}$

thermal rate coefficient $k_{\rm v,j}(T) = \langle v \rangle \sigma_{\rm v,j} = \sqrt{\frac{8k_{\rm B}T}{\pi \mu}} \pi b_{\rm max}^2 \frac{N_{\rm v,j}^{\rm R}}{N}.$ School on Open Science Cloud -Quantum Dynamics I

> S Rampino 7 June 2017

. Introduction

II. Potential energy surface

III. Coordinates

IV. Reaction dynamics

10. Quasi-classical trajectories

11. Quantum time-dependent

12. Quantum time-independent

11. Quantum time-dependent

The nuclei Schrödinger equation

$$i\hbar \frac{\partial}{\partial t}\psi(\mathbf{q},t) = \Big[\hat{T}_{\mathbf{q}}(\mathbf{q}) + \bigvee(\mathbf{q})\Big]\psi(\mathbf{q},t)$$

must have solution

$$\psi(\mathbf{q},t) = \hat{U}(t,t_0)\psi(\mathbf{q},t_0)$$

School on Open Science Cloud -Quantum Dynamics I

> S Rampino 7 June 2017

I. Introduction

II. Potential energy surface

III. Coordinates

IV. Reaction dynamics

10. Quasi-classical trajectories

11. Quantum time-dependent

12. Quantum time-independent

11. Quantum time-dependent

Time evolution operator

$$\hat{U}(t,t_0) = e^{\frac{-i\hat{H}\Delta t}{\hbar}}$$

Ground equation for TD methods

$$\psi(\mathbf{q},t) = e^{\frac{-i\hat{H}\Delta t}{\hbar}}\psi(\mathbf{q},t_0)$$

School on Open Science Cloud -Quantum Dynamics I

> S Rampino 7 June 2017

I. Introduction

II. Potential energy surface

III. Coordinates

IV. Reaction dynamics

10. Quasi-classical trajectories

11. Quantum time-dependent

12. Quantum time-independent

11. Quantum time-dependent

Typical TD technique: the wavepacket method

- ▶ set up a state selected reactant wp on a discrete grid
- evolve in time
- ► analyze

Features

- initial value method
- makes use of discrete grids
- 1 reactant state and a wide range of scattering energies per run

School on Open Science Cloud -Quantum Dynamics I

> S Rampino 7 June 2017

. Introduction

II. Potential energy surface

III. Coordinates

IV. Reaction dynamics

10. Quasi-classical trajectories

11. Quantum time-dependent

12. Quantum time-independent

11. Quantum time-dependent

School on Open Science Cloud -Quantum Dynamics I

> S Rampino 7 June 2017

I. Introduction

II. Potential energy surface

III. Coordinates

IV. Reaction dynamics

10. Quasi-classical trajectories

11. Quantum time-dependent

12. Quantum time-independent

V. Applications

Wavepacket method

11. Quantum time-dependent

Wavepacket method

1. set up a (v, j) wavepacket

School on Open Science Cloud -Quantum Dynamics I

> S Rampino 7 June 2017

I. Introduction

II. Potential energy surface

III. Coordinates

IV. Reaction dynamics

10. Quasi-classical trajectories

11. Quantum time-dependent

12. Quantum time-independent

$$\psi(R, r, t_0) = e^{-ik(R - R_0)} e^{-\alpha(R - R_0)^2} \phi_0(r)$$

11. Quantum time-dependent

Wavepacket method

set up a (v, j) wavepacket
 evolve in time

School on Open Science Cloud -Quantum Dynamics I

> S Rampino 7 June 2017

I. Introduction

II. Potential energy surface

III. Coordinates

IV. Reaction dynamics

10. Quasi-classical trajectories

11. Quantum time-dependent

12. Quantum time-independent

$$\psi(\mathsf{R},\mathsf{r},\mathsf{t}) = e^{\frac{i\hat{H}(\mathsf{t}-\mathsf{t}_0)}{\hbar}}\psi(\mathsf{R},\mathsf{r},\mathsf{t}_0)$$

11. Quantum time-dependent

Wavepacket method

1. set up a (v, j) wavepacket 2. evolve in time 3. analyse far into the product region

$$S_{\rm cv',av}(E) = -\frac{1}{\langle \psi_{\rm cv'} | \Phi_{\rm Ecv'}^+ \rangle \langle \Phi_{\rm Eav}^- | \psi_{\rm av} \rangle} \int_0^\infty e^{\frac{iEt}{\hbar}} \langle \psi_{\rm cv'} | e^{\frac{-i\hat{H}t}{\hbar}} | \psi_{\rm av} \rangle \, \mathrm{d}t$$

0.16

0.14

School on Open Science Cloud -Quantum Dynamics I

> S Rampino 7 June 2017

I Introduction

II. Potential energy surface

IV Reaction

11. Quantum time-dependent

12. Quantum time-independent Insert

$$\psi(\mathbf{q},t) = e^{\frac{-i\hat{H}\Delta t}{\hbar}}\psi(\mathbf{q},t_0)$$

in

$$i\hbar \frac{\partial}{\partial t}\psi(\mathbf{q},t) = \Big[\hat{T}_{\mathbf{q}}(\mathbf{q}) + V(\mathbf{q})\Big]\psi(\mathbf{q},t)$$

and get the ground equation for TI methods

$$\hat{H}\psi(\mathbf{q},t_0) = E\psi(\mathbf{q},t_0)$$

School on Open Science Cloud -Quantum Dynamics I

> S Rampino 7 June 2017

I. Introduction

(1)

(2)

(3)

II. Potential energy surface

III. Coordinates

IV. Reaction dynamics

10. Quasi-classical trajectories

11. Quantum time-dependent

12. Quantum time-independent

V. Applications

time factored out

12. Quantum time-independent

A typical TI approach: the hyperspherical method

- adopt ρ as a continuity variable
- \blacktriangleright divide ρ into sectors and expand ψ locally
- \blacktriangleright analyze ψ

Features

- not an initial value method
- expands in analytical basis functions
- ► all reactant states and 1 scattering energy per run

School on Open Science Cloud -Quantum Dynamics I

> S Rampino 7 June 2017

. Introduction

II. Potential energy surface

III. Coordinates

IV. Reaction dynamics

10. Quasi-classical trajectories

11. Quantum time-dependent

12. Quantum time-independent

School on Open Science Cloud -Quantum Dynamics I

> S Rampino 7 June 2017

I. Introduction

II. Potential energy surface

III. Coordinates

IV. Reaction dynamics

V. Applications

13. Astrochemistry 14. $C + CH^+ \rightarrow C_2^+ + H$: dynamics 15. $C + CH^+ \rightarrow C_2^+ + H$: kinetics

School on Open Science Cloud -Quantum Dynamics I

S Rampino 7 June 2017

Grand-challenge

Develop a complete model for an interstellar cloud

II. Potential energy surface

I Introduction

III. Coordinates

IV. Reaction

dynamics

V. Applications

13. Astrochemistry

14. $C + CH^+ \rightarrow C_2^+ + H$: dynamics 15. $C + CH^+ \rightarrow C_2^+ + H$: kinetics

Interstellar chemistry

low 7 (5-300 K) low density (10³-10¹⁴ cm⁻³)

 Gas-phase barrierless reactions involving ions or radicals

 Heterogeneous or multiphase processes involving dust grains and icy mantles

Processes

radiative association associative detachment dust-grain-catalysed reactions photodissociation colliaional dissociation dissociative recombination ion-neutral reactions neutral-neutral reactions charge-transfer reactions

Model setup

number densities of all species (hundreds) physical conditions within the cloud set of reactions (thousands) reactions rates for all chemical processes School on Open Science Cloud -Quantum Dynamics I S Rampino 7 June 2017 I. Introduction II. Potential energy surface III. Coordinates IV. Reaction

V. Applications

13. Astrochemistry

 $\begin{array}{l} \text{14. C} + \text{CH}^+ \rightarrow \\ \text{C}_2^+ + \text{H: dynamics} \\ \text{15. C} + \text{CH}^+ \rightarrow \\ \text{C}_2^+ + \text{H: kinetics} \end{array}$

Processes

radiative association associative detachment dust-grain-catalysed reactions photodissociation colliaional dissociation dissociative recombination ion-neutral reactions neutral-neutral reactions charge-transfer reactions

Model setup

number densities of all species (hundreds) physical conditions within the cloud set of reactions (thousands) reactions rates for all chemical processes School on Open Science Cloud -Quantum Dynamics I S Rampino 7 June 2017

I. Introduction

II. Potential energy surface

III. Coordinates

IV. Reaction dynamics

V. Applications

13. Astrochemistry

14. C + CH⁺ \rightarrow C₂⁺ + H: dynamics 15. C + CH⁺ \rightarrow C₂⁺ + H: kinetics

Processes

radiative association associative detachment dust-grain-catalysed reactions photodissociation colliaional dissociation dissociative recombination ion-neutral reactions neutral-neutral reactions charge-transfer reactions

Model setup

number densities of all species (hundreds) physical conditions within the cloud set of reactions (thousands) reactions rates for all chemical processes

Kinetic databases

KIDA http://kida.obs.u-bordeaux1.fr/ UDfA http://udfa.ajmarkwick.net/

School on Open Science Cloud -Quantum Dynamics I

S Rampino 7 June 2017

C_o^+ + H: kinetics

Processes

radiative association associative detachment dust-grain-catalysed reactions photodissociation colliaional dissociation dissociative recombination ion-neutral reactions neutral-neutral reactions charge-transfer reactions

Model setup

number densities of all species (hundreds) physical conditions within the cloud set of reactions (thousands) reactions rates for all chemical processes

Many of the reactions in these databases need to be studied/revised

School on Open Science Cloud -Quantum Dynamics I

S Rampino 7 June 2017

. Introduction

II. Potential energy surface

II. Coordinates

IV. Reaction dynamics

V. Applications

13. Astrochemistry

14. $C + CH^+ \rightarrow C_2^+ + H: dynamics$ 15. $C + CH^+ \rightarrow C_2^+ + H: kinetics$

Kinetic databases

KIDA http://kida.obs.u-bordeaux1.fr/ UDfA http://udfa.ajmarkwick.net/

V. Applications 14. C + CH⁺ \rightarrow C₂⁺ + H: dynamics

School on Open Science Cloud -Quantum Dynamics I

> S Rampino 7 June 2017

V. Applications 14. C + CH⁺ \rightarrow C⁺₀ + H: dynamics

Opacity functions (10, 300, 2000 K)

capture-type mechanism at low collision energies footprints of other mechanism showing up at higher collision energies

L Pacifici, M Pastore, E Garcia, A Laganà, S Rampino, A dynamics investigation of the C + CH⁺ \rightarrow C₂⁺ + H reaction on an ab initio bond-order like potential. The Journal of Physical Chemistry A 120, 5125-5135 (2016)

School on Open Science Cloud -Quantum Dynamics I

S Rampino 7 June 2017

C_o^+ + H: kinetics

V. Applications 15. C + CH⁺ \rightarrow C₂⁺ + H: kinetics

School on Open Science Cloud -Quantum Dynamics I

> S Rampino 7 June 2017

15. C + CH⁺ \rightarrow C₂⁺ + H: kinetics

S Rampino, M Pastore, E Garcia, L Pacifici, A Laganà, On the temperature dependence of the rate coefficient of formation of C_2^+ from C + CH $^+$, Monthly Notices of the Royal Astronomical Society 460, 2368-2375 (2016)

V. Applications 15. C + CH⁺ \rightarrow C₂⁺ + H: kinetics

School on Open Science Cloud -Quantum Dynamics I

> S Rampino 7 June 2017

15. C + CH⁺ \rightarrow C₂⁺ + H: kinetics

V. Applications 15. C + CH⁺ \rightarrow C₂⁺ + H: kinetics

School on Open Science Cloud -Quantum Dynamics I

> S Rampino 7 June 2017

Model calculations improperly enhance CH⁺ consumption in kinetic models

S Rampino, M Pastore, E Garcia, L Pacifici, A Laganà, On the temperature dependence of the rate coefficient of formation of C_2^+ from C + CH⁺, Monthly Notices of the Royal Astronomical Society 460, 2368-2375 (2016)

School on Open Science Cloud -Quantum Dynamics I

> S Rampino 7 June 2017

I. Introduction

II. Potential energy surface

III. Coordinates

IV. Reaction dynamics

V. Applications

End