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About your lecturer

• I am a INFN researcher, working in the CMS 
experiment at CERN since 2002
– member of the CMS Statistics Committee, 2009-

(and chair, 2012-2015)

• Previously (1992-2010) have worked in the 
CDF experiment at the Tevatron
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analyses in CDF. But becoming sapient in 
statistical matters is a lifelong task, and am 
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contains discussions on how statistical 
inference is made in large particle 
physics experiments
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Contents of the first part

• An introduction: why statistics matters
– how knowing the basic statistical distributions saves you from 

horrible pitfalls

• The nuts and bolts of error propagation
– how understanding error propagation makes you a better 

physicist

• Properties of estimators

• The χ2 method

• The Maximum Likelihood method
– how knowing the properties of your estimators allows you to 

not be fooled nor fool yourself

• Covariance matrix, error ellipse

• A ͞siŵple͟ Đase: the ǁeighted aǀeƌage of tǁo ŵeasuƌeŵeŶts, 
in case there is a correlation

• Some more notes on choosing estimators



Two suggestions

• Interrupt often ! It will keep us awake and you might chance to ask 
a good question

• These slides and the covered material are somewhat tuned to be 
useful to HEP grad students 
– I sometimes use HEP examples; in those cases, I will try to explain the 

boundaries for the benefit of non-physicists

• I do not expect you to follow all the maths – 3 hours are little time 
for the material we need to cover today, so sometimes I will go fast 
and I will usually neglect to prove the points I make

– the good thing for you is that you can try yourself at home

– we will focus on the concepts; the slides are available for offline 
consumption so that you can check the details later



Statistics matters!
• To be a good scientist, one MUST understand Statistics:

– ͞Our results were inconclusive, so we had to use Statistics͟
We are quite often in that situation !

– A good knowledge of Statistics allows you to make optimal use of your  
measurements, obtaining more precise results than your colleagues, other things 
being equal

– It is very easy to draw wrong inferences from your data if you lack some basic 
knowledge in the theory of Statistics (it is easy regardless!)

– Foundational Statistics issues play a role in our measurements, because different 
statistical approaches provide different results
• There is nothing wrong with this: the different results just answer different questions

• The problem usually is, what is the question we should be asking ? 

 Not always trivial to decide!

• We also as scientists have a responsibility for the way we communicate our 
results. Sloppy jargon, imprecise claims, probability-inversion statements are 
bad. And who talks bad thinks bad ! 

• I will produce one real-life example in support of the general problem of wrong 
inference due to insufficient knowledge. A couple more examples will be given 
later on.



The Basic Statistics Distributions
Let us review quickly the main properties of a few of the statistical distributions 
you are most likely to work with in data analysis

NB you find all needed info in any textbook (or even the PDG) – this is a summary

Name Expression Mean Variance Fun facts

Gaussian 

f(x;ʅ,σ)=
e-[(x-ʅ)

2
/2σ2

]/(2πσ2)1/2 ʅ σ2

Limit of sum of 

random vars is 

Gaussian distr. 

Exponential 

f(x;τ)=
e-x/τ/τ τ τ2

Nothing fun 

about the exp

Uniform 

f(x;α,β)=

(β-α)/2 for α<=x<=β
0 otherwise

(α+β)/2 (β-α)2/12

Any continuous 

r.v. can be 

easily 

transformed 

into uniform

Poisson f(x;ʅ)= e-ʅʅN/N! ʅ ʅ
Turns into 

Gaussian for 

large ʅ



More distributions

Name Expression: Mean Variance Fun facts

Binomial

f(r;N,p)= 
N! pr(1-p)N-r/[r!(N-r)!] Np Npq

Special case of 

Multinomial 

distribution

Chisquare 

f(x;N)=
e-x/2 (x/2)N/2-1/[2Γ(N/2)] n 2n

Turns into 

Gaussian for

large n

Cauchy

f(x)=
[π(1+x2)]-1 Undefined! Infinite

AKA Breit-

Wigner, AKA 

Lorentzian. 

Models 

residuals when 

uncertainties 

add linearly



Warm-up example 1: Why it is crucial 

to know basic statistical distributions
• I bet most of you know the expression, maybe even the basic properties, of the following:

– Gaussian (AKA Normal) distribution

– Poisson distribution

– Exponential distribution

– Uniform distribution

– Binomial and Multinomial distribution

• A mediocre scientist can live a comfortable life without having other distributions at his or 
her fingertips. However, I argue you should at the very least recognize and understand :
– Chisquare distribution

– Compound Poisson distribution

– Log-Normal distribution

– Gamma distribution

– Beta distribution

– Cauchy distribution (AKA Breit-Wigner)

– Laplace distribution

– Fisher-Snedecor distribution

• There are many other important distributions –the list above is just a sample set.

• We have no time to go through the properties of all these important functions. However, 
most Statistics books discuss them carefully, for a good reason.

• We can make at least just an example of the pitfalls you may avoid by knowing they exist!



The Poisson 

distribution

You probably know what the Poisson distribution is:

– The expectation value of a Poisson variable with mean ʅ is E(n) = m
– its variance is V(n) = m

The Poisson is a discrete distribution. It describes the probability of getting 
exactly n events in a given time, if these occur independently and randomly at 
constant rate (in that given time) μ

Other fun facts:

– it is a limiting case of the Binomial [                                    ]  for p0, in the limit 
of large N

– it converges to the Normal for large m
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The Compound Poisson distribution

• Less known is the compound Poisson distribution, which describes the 
sum of N Poisson variables, all of mean m, when N is also a Poisson 
variable of mean l:

– Obviously the expectation value is E(n)=lm
– The variance is V(n) = lm(1+m)

• One seldom has to do with this distribution in practice. Yet I will make the 
point that it is necessary for a physicist to know it exists, and to recognize 
it is different from the simple Poisson distribution.

Why ? Should you really care ?

Let me ask before we continue: how many of you knew about the existence 
of the compound Poisson distribution?
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In 1968 the gentlemen named in the above clip observed four 

tracks in a Wilson chamber whose apparent ionization was 

compatible with the one expected for particles of charge  2/3e. 

Successively, they published a paper where they showed a track 

which could not be anything but a fractionary charge particle!

In fact, it produced 110 counted droplets per unit path length 

against an expectation of 229 (from the 55,000 observed tracks).

What is the probability to observe such a phenomenon ? 

We compute it in the following slide.

Note that if you are strong in nuclear physics and thermodynamics, 

you may know that a scattering interaction produces on 

average about four droplets. The scattering and the 

droplet formation are independent Poisson processes.

However, if your knowledge of Statistics is poor, this observation 

does not allow you to reach the right conclusion. What is the 

difference, after all, between a Poisson process and the 

combination of two ?

PRL 23, 658 (1969)



Significance of the observation

Case A: single Poisson process, with m=229:

Since they observed 55,000 tracks, seeing at least one track with P=1.6x10-18 has 
a chance of occurring of 1-(1-P)55000, or about 10-13
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You may know your detector and the underlying physics as well as you know your ***, 

but only your knowledge of basic Statistics prevents you from fooling yourself !
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Case B: compound Poisson process, with lm=229, m=4:

One should rather compute

from which one gets that the probability of seeing at least one such track is 

rather 1-(1-P͛Ϳ55000, or 92.5%. Ooops!



Point estimation:

Combining Measurements and Fitting

• Perceived as two separate topics, but they really are the same thing (the former is 
a special case of the latter) – I will try to explain what I mean in the following

• The problem of combining measurements arises quite commonly and we should 
spend some time on it
– We will get eventually to the point of spotting potential issues arising from correlations. 

– We should all become familiar with these issues, because for a scientist combining 
measurements is a daily activity.

• To get to the heart of the matter we need to fiddle with a few basic concepts. 
What we call in jargon Data fitting iŶ StatistiĐs is Ŷaŵed ͞parameter estimation͟ 
;ǁhiĐh should ďe itself Đoŵposed of tǁo paƌts, ͞point estimation͟ aŶd ͞interval 
estimation͟Ϳ. OŶe thus ƌealizes that the issue of combining different estimates of 
the same parameter is a particular case of data fitting, and in fact the tools we use 
are the same

• It is stuff you should all know well, but if you do not, I am not going to leave you 
behind

 the next few slides contain a reminder of a few 

fundamental definitions. 



PDF, E[.], Mean, and Variance

• The probability density function (pdf) f(x) of a random variable x is a normalized function 
which describes the probability to find x in a given range: 

P(x,x+dx) = f(x)dx

– defined for continuous variables. For discrete ones, e.g. P(n|m) = e-mmn/n! is a probability tout-court.

• The expectation value of the random variable x is then defined as

• E[x], also called mean of x, thus depends on the distribution f(x). Of crucial importance is 
the ͞seĐoŶd ĐeŶtƌal ŵoŵeŶt͟ of ǆ,

also called variance. The variance enjoys the property that 

E[(x-E[x])2] = E[x2]-m2,   as you can prove by yourself at home.

• Also well-known is the standard deviation s = sqrt(V[x]). 
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Parameter estimation: definitions

The parameters of a pdf are constants that characterize

its shape, e.g.

Suppose we have a sample of observed values:

here x is meant to be a random variable, while theta is a parameter

We often want to find some function of the data to estimate the 

parameter(s):

Note: the estimator gets written with a hat

Usually we say ͚estimator͛ for the function of x1, ..., xn;

͚estimate͛ for the value of the estimator with a particular data set.



Two properties of estimators

If we were to repeat the entire measurement, the estimates from each would distribute 

with their own pdf g(), which can be characterized by its properties:

biasedlarge

variance

best

We want small (or zero) bias (systematic error):

such that the average of repeated measurements should tend to the true value.

And we want a small variance (statistical error):

Note: small bias & small variance are in general conflicting criteria. You probably

Know this from practice, but in Statistics this is a surprisingly universal rule

(will define better below)



Covariance and correlation
• If you have two random variables x,y you can also define their covariance, defined as

• This allows us to construct a covariance matrix V, symmetric, and with positive-defined 
diagonal elements, the individual variances sx

2,sy
2:

• A measure of how x and y are correlated is given by their correlation coefficient r:

• Note that if two variables are independent, i.e. f(x,y) = fx(x) fy(y) , then r=0 and 

E[xy] = E[x]E[y] = mxmy. 

However, E[xy]=E[x]E[y] is not sufficient for x and y be independent! In everyday 
usage oŶe speaks of ͞uŶĐoƌƌelated ǀaƌiaďles͟ ŵeaŶiŶg ͞iŶdepeŶdeŶt .͟ IŶ statistiĐal 
terms,uncorrelated is much weaker than independent!
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Uncorrelated vs Independent

Uncorrelated << Independent: r=0 is a very weak condition; r only 
desĐƌiďes the teŶdeŶĐǇ of the data to ͞liŶe up͟ iŶ a ĐeƌtaiŶ ;aŶǇͿ 
direction. Many strictly dependent pairs of variables fulfil it. 

E.g. the abscissa and ordinate of the data points in the last row below.



The Error Ellipse
When one measures two correlated parameters q = (q1,q2), in the large-sample limit their 
estimators will be distributed according to a two-dimensional Gaussian centered on q. 
OŶe ĐaŶ thus dƌaǁ aŶ ͞eƌƌoƌ ellipse͟ as the loĐus of poiŶts ǁheƌe the c2 is one unit away 
from its minimum value (or the log-likelihood equals ln (Lmax)-0.5).

The location of the tangents to the axes provide the standard 

deviation of the estimators. The angle f is given by

A measurement of one 

parameter at a given value of 

the other is determined by the 

intercept on the line connecting 

the two tangent points. 

The uncertainty of that single 

measurement, at a fixed value 

of the other parameter, is 

The correlation coefficient r is the 

distance of each axis from the 

tangent point, in units of the 

corresponding standard deviation 
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Error propagation
Imagine you have n i.i.d. variables xi, and (quite typically) you do not know their pdf but at 
least know their mean and covariance matrix.  Take a function y of the xi : what is its pdf ? 
You can expand it in a Taylor series around the means, stopping at first order:

From this one can show that the expectation value of y and y2 are, to first order,

and the variance of y is then the 
second  term in this expression.

(see backup)

In case you have a set of m functions y(x), you can build their own covariance matrix

This is often expressed in matrix form once one 

defines a matrix of derivatives A,

The aďoǀe foƌŵulas alloǁ oŶe to ͞pƌopagate͟ the ǀaƌiaŶĐes fƌoŵ the ǆi to the yj, but this is 
only valid if it is meaningful to expand linearly around the mean

Beware of routine use of these formulas in non-trivial cases.
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• To see how standard error propagation works, let us use the formula for the 
variance of y(x)

• One thus sees that for uncorrelated variables x1,x2 (V12=0), the variances of their 
sum add linearly, while for the product it is the relative variances which add 
linearly.
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How error propagation works

for the sum,

for the product.

and consider the simplest examples 

with two variables x1,x2: their sum and 

product.



Example 2: why we need to

understand error propagation
• We  have seen how to propagate uncertainties from some measurements (random 

variables!) xi to a derived quantity y = f(x): 

this is just standard error propagation, for uncorrelated random variables xi. 

What we neglect to do sometimes is to stop and think 

at the consequences of that simple formula, in the 

specific cases to which we apply it. That is because we 

have not understood well enough what it really means.

• Let us take the problem of weighting two objects  A and B 

with a two-arm scale offering a constant accuracy, say 

1 gram. You have time for two weight measurements. 

What do you do ?

– weigh A, then weigh B

– something else ? Who has a better idea ?
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Smart weighing

• If you weigh separately A and B, your results will be affected by the stated 
accuracy of the scale: sA = s = 1g , sB = s = 1g.

• But if you instead weighed S=A+B, and then weighed D=B-A by putting 
them on different dishes, you would be able to obtain

Your uncertainties on A and B have become 1.41 times smaller! This is the 
result of having made the best out of your measurements, by making 
optimal use of the information available. When you placed one object on a 
dish, the other one was left on the table, begging to participate!
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Addendum: fixed % error

• What happens to the previous problem if instead of a constant error of 1 gram, the 
balance provides measurements with accuracy of k% ?

• If we do separate weighings, of course we get sA=kA, sB=kB. But if we rather weigh S 
= B+A and D = B-A, what we get is (as A=(S-D)/2, B=(D-S)/2)

• The procedure has shared democratically the uncertainty in the weight of the two 
objects. If A=B ǁe do Ŷot gaiŶ aŶǇthiŶg fƌoŵ ouƌ ͞tƌiĐk͟ of ŵeasuƌiŶg S aŶd D: ďoth 
sA=kA and sB=kB are the same as if you had measured A and B separately. But if they 
are different, we gain accuracy on the heavier one at expense of the uncertainty on 
the lighter one!

• Of course the limiting case of A>>B corresponds instead to a very inefficient 
measurement of B, while the uncertainty on A converges to what you would get if you 
weighed it twice.
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Weighted average
• Now suppose we need to combine two different, independent 

measurements with variances σ1, σ2 of the same physical quantity x0: 
– we denote them with 

x1(x0,σ1), x2(x0,σ2)   the PDFs are G(x0,σi)

• We wish to combine them linearly to get the result with the smallest 
possible variance,

x = cx1+dx2

 What are c, d such that σF is smallest ?

Answer: we first of all note that d=1-c if we want <x>=x0 (reason with expectation 

values to convince yourself of this). Then, we simply express

the variance of x in terms of the variance of x1 and x2

, and find c which minimizes the expression. This yields:

The generalization of these 

formulas to N measurements is 

trivial
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Estimators: a few definitions
• Given a sample {xi} of n observations of a random variable x, drawn from a pdf f(x), 

one may construct a statistic: a function of {xi} containing no unknown parameters. An 
estimator is a statistic used to estimate some property of a pdf. Using it on a set of 
data provides an estimate of the parameter.

• Estimators are labeled with a hat (will also use the * sign here) to distinguish them 
from the respective true, unknown value, when they have the same symbol.

• Estimators are consistent if they converge to the true value for large n.

• The expectation value of an estimator θ* having a sampling distribution H(q*;q) is

• Simple example of day-to-day estimators: the sample mean and the sample variance

• The bias of an estimator is b=E[q*]-q. An estimator can be consistent even if biased: 
the average of an infinite replica of experiments with finite n will not in general 
converge to the true value, even if E[q*] will tend to q as n tends to infinity.

• Other important properties of estimators (among which usually there are tradeoffs):
– efficiency:  an efficient estimator (within some class) is the one with minimum variance

– robustness: the estimate is  less dependent on the unknown true distribution f(x) for a more 
robust estimator (see example on OPERA at the end)

– simplicity:  a generic property of estimators which produce unbiased, Normally distributed results, 
uncorrelated with other estimates.
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More properties of estimators 

and notes
• Mean-square error: MSE = V[x*] + b2

it is the suŵ of ǀaƌiaŶĐe aŶd ďias, aŶd thus giǀes ŵoƌe iŶfoƌŵatioŶ oŶ the ͞total͟ 
error that one commits in the estimate, by using a biased estimator. Given the 
usual trade-off between bias and variance of estimators, MSE is a good choice for 
the quantity to minimize.

 later we will show a practical example of this

• The RCF bound gives a lower limit to the variance of biased estimators so one can 
take that into account in choosing an estimator (see later)

• Consistency is an asymptotic property; e.g. it does not imply that adding some
more data will by force increase the precision!

• Bias and consistency are independent properties – there are inconsistent 
estimators which are unbiased, and consistent estimators which are biased.

• Notable estimator: the MLE  and the least-square estimate. We will define them 
later.

• Asymptotically most estimators are unbiased and Normally distributed, but the 
question is how far is asymptopia. Hints may come from the non-parabolic nature 
of the Likelihood at minimum, or by the fact that two asymptotically efficient 
estimators that provide significantly different results. 



Maximum Likelihood
• Take a pdf for a random variable x, f(x; q) which is analytically known, but for which the value of m 

parameters q is not. The method of maximum likelihood allows us to estimate the parameters q if 

we have a set of data xi distributed according to f.

• The probability of our observed set {xi} depends on the distribution of the pdf and on the thetas. If 

the measurements are independent, we have 

• The likelihood function 

is then a function of the parameters q only. It is written as the joint pdf of the xi, but we treat those 

as fixed.  L is not a pdf!  NOTA BENE! The integral under L is MEANINGLESS.

• Using L(qͿ oŶe ĐaŶ defiŶe ͞ŵaǆiŵuŵ likelihood estiŵatoƌs͟ foƌ the paƌaŵeteƌs q as the values 

which maximize the likelihood, i.e. the solutions of the equation

foƌ j=ϭ…ŵ
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Note: The ML requires (and exploits!)

the full knowledge of the distributions

to find xi in [xi,xi+dxi[



Variance of the MLE

• In the simplest cases, i.e. when one has unbiased estimates and 
Gaussian distributed data, one can estimate the variance of the 
maximum likelihood estimate with the simple formula

(For those who know what MINUIT is, this is also the default used by 
MIGRAD to return the uncertainty of a MLE from a fit).

However, note that this is only a lower limit of the variance in 
conditions when errors are not Gaussian and when the ML 
estimator is unbiased. A general formula called the Rao-Cramer-
Frechet inequality gives this lower bound as
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Example 3: the Loaded Die
Imagine you want to test whether a die is loaded. Your hypothesis might be that 
the probabilities of the six occurrences are not equal, but rather that

Your data comes from N=20 repeated throws of the die, whereupon you get:

The likelihood is the product of probabilities, so to estimate the "load" t you write L as

Setting the derivative wrt t to zero of –logL yields a quadratic equation:

This has one solution in the allowed range for t, [-1/6,1/3]: t=0.072. Its uncertainty can be

obtained by the variance, computed as the inverse of the second derivative of the likelihood.

This amounts to +-0.084. The point estimate of the load, the MLE, is different from zero, 

but compatible with it. We conclude that the data cannot establish the presence of a load.



Exercise with root

Write a root macro that determines, using the likelihood of the previous slide, the 
value of the bias, t, and its uncertainty, given a random set of N (unbiased) die 
throws.

Directions:

1) Youƌ ŵaĐƌo ǁill ďe Đalled ͞Die.C͟ aŶd it ǁill ĐoŶtaiŶ a fuŶĐtioŶ ͞ǀoid Die;iŶt NͿ {}͟
2) Produce a set of N throws of the die by looping i=0...N-1 and storing the result of 

(int)(1+gRandom->Uniform(0.,6.)); 

3) Call N1=number of occurrence of 1; N3=occurrences of 6; N2=other results.

4) With paper and pencil, derive the coefficients of the quadratic equation in t for 
the likelihood maximum as a function of N1, N2, N3.

5) Also derive the expression of –d2lnL/dt2 as a function of t and N1,N2,N3.

6) Insert the obtained formulas in the code to compute t* and its uncertainty σ(t*).

7) Print out the result of t in the allowed range [-1/6,1/3] and its uncertainty. If 
there are two solutions in that interval, take the result away from the boundary.

8) How frequently do you get a result for t less than one standard deviation away 
from 0?



The method of least squares

• Imagine you have a set of n independent measurements yi –Gaussian random 
variables– with different unknown means li and known variances si

2. The yi can 
be considered a vector having a joint pdf which is the product of n Gaussians:

• Let also ʄ be a function of x and a set of m parameters q, l(x;q1…qm). In other 
words, ʄ is the model you want to fit to your data points y(x).

We want to find estimates of q.

If we take the logarithm of the joint pdf we get the log-likelihood function,

which is maximized by finding q such that the following quantity is minimized:
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• The expression written above near the minimum follows a c2 distribution only if the 
function l(x;q) is linear in the parameters q and if it is the true form from which the 
yi were drawn.

• The ŵethod of least sƋuaƌes giǀeŶ aďoǀe ͞works͟ also foƌ ŶoŶ-Gaussian errors σi, as 
long as the yi are independent. But it may have worse properties than a full 
likelihood.

• If the measurements are not independent, the joint pdf will be a n-dimensional 
Gaussian. Then the following generalization holds:
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Note that unlike the ML, writing the c2 only 

requires a unbiased estimate of the variance of a 

distribution to work! (it does a Gaussian 

approximation)

ʄ(x;a,b,c)

y

x

Both a nice and a devaluing property!



Example 4: know the properties of 

your estimators

• Issues (and errors hard to trace) may arise in the simplest of 
calculations, if you do not know the properties of the tools you are 
working with.

• Take the simple problem of combining three measurements of the 
same quantity. Make these be counting rates, i.e. with Poisson 
uncertainties:

– A1 = 100

– A2 = 90

– A3 = 110

These measurements are fully compatible with each other, given that 
the estimates of their uncertainties are sqrt(Ai)={10, 9.5, 10.5} 
respectively. We may thus proceed to average them, obtaining 

<A> = 100.0+-5.77

If theǇ aƌeŶ͛t,
doŶ͛t ĐoŵďiŶe!



Now imagine, for the sake of argument, that we were on a lazy mood, and 
rather than do the math we used a c2 fit to evaluate <A>. 

Surely we would find the same answer as the simple average of the three 
numbers, right? 

In general, a c2 statistic results from a 

weighted sum of squares; the weights 

should be the inverse variances of the true 

values. 

Unfortunately, we do not know the latter!

c2 fit Likelihood fit

Let us dig a little bit into this matter. This

requires us to study the detailed definition 

of the test statistics we employ in our fits.

the c2 fit does Ŷot ͞pƌeseƌǀe
the aƌea͟ of the fitted histogƌaŵ

WTF is going on ??

… Wrong!



Two chisquareds and a Likelihood
• The ͞staŶdaƌd͟ defiŶitioŶ is Đalled  ͞PeaƌsoŶ s͛ c2 ,͟ ǁhiĐh for Poisson data we write as

• The otheƌ ;AKA ͞ŵodified͟ c2Ϳ is Đalled ͞NeǇŵaŶ s͛ c2͟:

• While c2
P uses the best-fit variances at the denominator, c2

N uses the individual estimated 
variances. Although both of these least-square estimators have asymptotically a c2

distribution, and display optimal properties, they use approximated weights.

The result is a pathology:  neither definition preserves the area in a fit!

c2
P overestimates the area, c2

N underestimates it. In other words, neither works to 
make a unbiased weighted average !

• The maximization of  the Poisson maximum likelihood,

instead preserves the area, and obtains exactly the result of the simple average.

Proofs in the next slides.
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Proofs – ϭ: PeaƌsoŶ͛s c2

• Let us compute n from the minimum of c2
P:

n is found to be the square root of the average of squares, and is 
thus by force an overestimate of the area!
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2 – NeǇŵaŶ s͛ c2

• If we minimize c2
N ,

we have:

the minimum is found for n equal to the harmonic mean of the inputs – which is 
an underestimate of the arithmetic mean!
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Just developing 

the fraction leads to 

which implies that

from which we finally get 

(ALTERNATIVELY, 

just solvefor n this one)



3 – The Poisson Likelihood LP

• We minimize LP by first taking its logarithm, and find:

As predicted, the result for n is the arithmetic mean. Likelihood fitting 
preserves the area!
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Putting it together • Take a k=100-bin histogram H, fill 

each bin with a value sampled 

from a Poisson distribution of 

mean m
• Fit H to a constant by minimizing 

c2
P , c2

N , -2ln(LP)  in turn

• Repeat many times, study ratio of 

average result to true m as a 

function of m

• One observes that the 

convergence is slowest for 

NeǇŵaŶ͛s c2, but the bias is 

significant also for c2
P

• This result depends only 

marginally on k

• Keep that in mind when you fit a 

histogram! Standard ROOT 

fitting uses V=Ni NeǇŵaŶ͛s def!



Discussion
• What we are doing when we fit a constant through a set of k bin contents is to extract the common, 

unknown, true value m from which the entries were generated, by combining the k measurements

We have k Poisson measurement of this true value. Each equivalent measurement should have the same 

weight in the combination, because each is drawn from a Poisson of mean m, whose true variance is m.

But having no m to start with, we must use estimates of the variance as a (inverse) weight. So the c2
N

gives the different observations different weights 1/Ni. Since negative fluctuations (Ni < m) have larger 

weights, the result is downward biased!

What c2
P does is different: it uses a common weight for all measurements, but this is of course also an 

estimate of the true variance V = m : the denominator of c2
P is the fit result for the average, m*. Since 

we minimize c2
P to find m*, larger denominators get preferred, and we get a positive bias: m* > m!

All methods have optimal asymptotic properties: consistency, minimum variance. However, one seldom 

is in that regime. c2
P and c2

N also have problems when Ni is small (non-Gaussian errors) or zero (
c2

N undefined). These drawbacks are solved by grouping bins, at the expense of loss of information.

LP does not have the approximations of the two sums of squares, and it has in general better properties.  

Cases when the use of a LL yields problems are rare. Whenever possible, use a Likelihood!

Whenever 

possible, use a 

Likelihood!



Linearization and correlation
• In the method of LS the linear approximation in the covariance may lead to 

strange results

• Let us consider the LS minimization of a combination of two measurements of 
the same physical quantity k, for which the covariance terms be all known. 

In the first case let there be a common offset error sc . We may combine the 
two measurements x1, x2 with LS by computing the inverse of the covariance 
matrix:
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The minimization of the above expression leads to the following

expressions for the best estimate of k and its standard deviation:
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The best fit value does not depend on sc, and corresponds

to the weighted average of the results when the individual 

variances s1
2 and s2

2 are used.

This result is what we expected, and all is good here. 



Normalization error: Hic sunt leones

In the second case we take two measurements of k having a common scale error.

The variance, its inverse, and the LS statistics might be written as follows:
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This time the minimization produces these results 

for the best estimate and its variance:
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Before we discuss these formulas, let us test

them on a simple case:

x1=10+-0.5, 

x2=11+-0.5, 

sf=20%

Try this at home to see

how it works!

This yields the following disturbing result:

k = 8.90+-2.92 !

What is going on ???



Shedding some light 

on the disturbing result

• The fact that averaging two measurements  with the 
LS method may yield a result outside their range 
requires more investigation.

• To try and understand what is going on, let us rewrite 
the result by dividing it by the weighted average result 
obtained ignoring the scale correlation:
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If the two measurements differ, their 

squared difference divided by the sum of the individual 

variances plays a role in the denominator. In that case the LS fit ͞sƋueezes the sĐale͟ 
by an amount allowed by sf in order to minimize the c2.

This is due to the LS expression using only first derivatives of the covariance:

the individual variances s1, s2 do not get rescaled when the normalization factor is lowered,

but the points get closer. 



When do results outside bounds make 

sense ?
• Let us take the general case of the average of two correlated measurements, when the 

correlation terms are expressed in the general form :

• The LS estimators provide the following result for the weighted average [Cowan 1998]:

whose (inverse) variance is

From the above we see that once we take a measurement of x of variance s1
2, a second 

measurement of the same quantity will reduce the variance of the average unless rs1/s2.

But what happens if r>s1/s2 ? In that case the weight w gets negative, and the average goes 
outside the ͞psǇĐhologiĐal͟ ďouŶd [ǆ1,x2].

The reason for this behaviour is that with a large positive correlation the two results are 
likely to lie on the same side of the true value! On which side they are predicted to be by the 
LS minimization depends on which result has the smallest variance.
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How can that be ?

It seems a paradox, but it is not. Again, the reason why we cannot digest the 
fact that the best estimate of the true value m be outside of the range of the 
two measurements is our incapability of understanding intuitively the 
mechanism of large correlation between our measurements.

• John: ͞I took a ŵeasuƌeŵeŶt, got ǆ1. I now am going to take a second 
measurement x2 which has a larger variance than the first. Do you mean to 
say I will more likely get x2>x1 if m<x1, and x2<x1 if m>x1 ??͟

Jane: ͞That is ĐoƌƌeĐt. Youƌ seĐoŶd ŵeasuƌeŵeŶt ͚goes aloŶg͛ ǁith the fiƌst, 
because your experimental conditions made the two highly correlated and x1

is ŵoƌe pƌeĐise.͟
John: ͞But that ŵeaŶs ŵǇ seĐoŶd ŵeasuƌeŵeŶt is utterly useless!͟
Jane: ͞WƌoŶg. It ǁill iŶ geŶeƌal reduce the combined variance. Except for the 

very special case of rs1/s,  the weighted average will converge to the true 

m. LS estimators are consistent !! .͟



Jane vs John, round 1

Jane: ͞Noǁ please tell ŵe ǁhetheƌ theǇ aƌe ŵostlǇ oŶ the saŵe side ;oƌaŶge ƌeĐtaŶglesͿ 
oƌ oŶ diffeƌeŶt sides ;piŶk ƌeĐtaŶglesͿ of the tƌue ǀalue.͟
John: ͞Ah! Suƌe, all ďut oŶe aƌe oŶ oƌaŶge aƌeas .͟
Jane: ͞That s͛ ďeĐause theiƌ ĐoƌƌelatioŶ ŵakes theŵ likelǇ to ͞go aloŶg͟ ǁith oŶe aŶotheƌ.͟  

John: ͞OkaǇ, so ?͟
Jane: ͞Please, ǁould Ǉou piĐk a feǁ poiŶts at 
ƌaŶdoŵ ǁithiŶ the ellipse?͟ 
John: ͞DoŶe. Noǁ ǁhat ?͟

John: ͞I still ĐaŶ͛t figuƌe out hoǁ oŶ 
earth the average of two numbers can be 

ouside of their range. It just fights with my 

ĐoŵŵoŶ seŶse.͟
Jane: ͞You Ŷeed to thiŶk iŶ pƌoďaďilistiĐ 
terms. Look at this error ellipse: it is thin and 

tilted (high correlation, large difference in 

ǀaƌiaŶĐesͿ.͟



Round 2: a geometric construction

Jane: ͞AŶd I ĐaŶ aĐtuallǇ ŵake it eǀeŶ easieƌ foƌ Ǉou. Take a tǁo-dimensional plane, draw 
axes, draw the bisector: the latter represents the possible values of m. Now draw the error 
ellipse aƌouŶd a  poiŶt of the diagoŶal. AŶǇ poiŶt, ǁe͛ll ŵoǀe it lateƌ.͟
John: ͞DoŶe. Noǁ ǁhat ?͟

Jane: ͞Noǁ eŶteƌ Ǉouƌ ŵeasuƌeŵeŶts ǆ=a, Ǉ=ď. That ĐoƌƌespoŶds to piĐkiŶg a poiŶt P;a,ďͿ iŶ 
the plane. Suppose you got a>b: you are on the lower right triangle of the plane. To find the 
best estimate of m, move the ellipse by keeping its center along the diagonal, and try to scale 
it also, suĐh that Ǉou iŶteƌĐept the ŵeasuƌeŵeŶt poiŶt P.͟
John: ͞But theƌe s͛ aŶ iŶfiŶitǇ of ellipses that fulfil that ƌeƋuiƌeŵeŶt .͟

Jane: ͞That s͛ ĐoƌƌeĐt. But we are only interested in the smallest ellipse! Its center will give 

us the best estimate of m, giǀeŶ ;a,ďͿ, the ƌatio of theiƌ ǀaƌiaŶĐes, aŶd theiƌ ĐoƌƌelatioŶ.͟

John: ͞Oooh! Noǁ I see it! It is ďouŶd to ďe outside of the iŶteƌǀal!͟

Jane: ͞Well, that is Ŷot tƌue: it is outside of the interval only because the ellipse you have 

drawn is thin and its angle with the diagonal is significant. In general, the result depends on 

how correlated the measurements are (how thin is the ellipse) as well as on how different 

the variances are (how  big is the angle of its major axis with the diagonal). Note also that in 

oƌdeƌ foƌ the ͞ƌesult outside ďouŶds͟ to oĐĐuƌ, the ĐoƌƌelatioŶ ŵust ďe positiǀe!



P(a,b)

a x1

When a large positive correlation

exists between the measurements

and the uncertainties differ, the best 

estimate of the unknown m may lie

outside of the range of the two 

measurements [a,b]

LS estimate of m

Tangent in P to

minimum ellipse is

parallel to 

bisector



More notes on Maximum 

Likelihood and other Estimators

• We discussed the ML method earlier; now making some further points about it.

• Take a random variable x with PDF f(x|q). We assume we know the form of f() but 
we do not know q (a single parameter here, but extension to a vector of 
parameters is trivial).

Using a sample {x} of measurements of x we want to estimate q
• If measurements are independent, the probability to obtain the set {x} within a 

given set of small intervals {dxi} is the product

This product formally describes how the set {x} we measure is more or less likely, 
given f and depending on the value of q

• If we assume that the intervals dxi do not depend on q, we obtain the maximum 
likelihood estimate of the parameter, as the one for which the likelihood function

is maximized.

Pretty please, NOTE: L is a function of the parameter q, NOT OF THE DATA x! 

L is not defined until you have terminated your data-taking.
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• The ML estimate of a parameter q can be obtained by setting the derivative of L wrt 
q equal to zero. 

• A few notes:
– usually one minimizes –lnL instead, obviously equivalent and in most instances simpler 

• additivity

• for Gaussian PDFs  one gets sums of square factors

– if more local maxima exist, take the one of highest L

– L needs to be differentiable in q (of course!). Also its derivative needs to.

– the maximum needs to be away from the boundary of the support, lest results make little sense 
(more on this later).

• It turns out that the ML estimate has in most cases several attractive features. As 
with any other statistic, the judgement on whether it is the thing to use depends on 
variance and bias, as well as the other desirable properties.

• Among the appealing properties of the maximum likelihood, an important one is its 
transformation invariance: if G(q) is a function of the parameter q,  then

which, by setting both members to zero, implies that if q* is the ML estimate of q, 
then the ML estimate of G is G*=G(q*), unless dG/dq=0.

This is a very useful property! However, note that even when q* is a unbiased 
estimate of q for any n, G* need not be unbiased. 
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RCF bound, efficiency and robustness

of point estimators
• A uniformly minimum variance unbiased estimator (UMVU) for a parameter is the one 

which has the minimum variance possible, for any value of the unknown parameter it 
estimates.

• The form of the UMVU estimator depends on the distribution of the parameter!

• Minimum variance bound: it is given by the RCF inequality

 A unbiased estimator (b=0) may have a variance as small as the inverse of the second derivative 

of the  likelihood function, but not smaller. 

• Two related properties of estimators are efficiency and robustness.
– Efficiency: the ratio of the variance to the minimum variance bound

The smaller the variance of an estimator, in general the better it is, since we can then expect the 
estimator to be the closest to the true value of the parameter (if there is no bias)

– Robustness: more robust estimators are less dependent on deviations from the assumed underlying pdf 

• Simple examples:
– Sample mean: most used estimator for centre of a distribution - it is the UMVU estimator of the mean, 

if the distribution is Normal; however, for non-Gaussian distributions it may not be the best choice. 

– Sample mid-range (def in next slide): UMVU estimator of the mean of a uniform distribution

• Both sample mean and sample mid-range are efficient (asymptotically efficiency=1) for the 
quoted distribution (Gaussian and box, respectively). But for others, they are not. Robust 
estimators have efficiency less dependent on distribution
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Choosing estimators: an example

OPERA quoted its best estimate of the dt as the 
sample mean of the measurements

– This is NOT the best choice of estimator for the 
location of the center of a square distribution!

– OPERA quotes the following result:

<dt> = 62.1 +- 3.7 ns

– The UMVU estimator for the Box is the mid-range,  
dt=(tmax+tmin)/2

– You may understand why sample mid-range is better 
than sample mean: once you pick the extrema, the 
rest of the data carries no information on the 
center!!! It only adds noise to the estimate of the 
average!

– The larger N is, the larger the disadvantage of the 
sample mean.  

I assume you are all familiar with the OPERA measurement of neutrino velocities

You may also have seen the graph below, which shows the distribution of dt (in nanoseconds) 

for individual neutrinos sent from narrow bunches at the end of October 2011

Because times are subject to random offset (jitter from GPS clock), you might expect this to be 

a Box distribution



Expected uncertainty 

on mid-range and average

• 100,000  n=20-entries histograms, with data 
distributed uniformly in [-25:25] ns

– Average is asymptotically distributed as a Gaussian; 
for 20 events this is already a good approximation. 
Expected width is 3.24 ns

– Uncertainty on average consistent with Opera result

– Mid-point has expected uncertainty of 1.66 ns

– if dt=(tmax+tmin)/2, mid-point distribution P(n dt) is 
asymptotically a Laplace distribution; again 20 events 
are seen to already be close to asymptotic behaviour 
(but note departures at large values)

– If OPERA had used the mid-point, they would have 
halved their statistical uncertainty:

– <dt> = 62.1 +- 3.7 ns  <dt> = 65.2+-1.7 ns 

NB If you were asking yourselves what is a Laplace 
distribution:

f(x) = 1/2b exp(-|x-m|/b)



Hoǁeǀeƌ…
• Although the conclusions above are correct if the underlying pdf of the data is exactly a 

box distribution, things change rapidly if we look at the real problem in more detail

• Each timing measurement, before the +-25 ns random offset, is not exactly equal to the 
others, due to additional random smearings:

• the proton bunch has a peaked shape with 3ns FWHM

• other effects contribute to smear randomly each timing measurement

– of course there may also be biases –fixed offsets due to imprecise corrections made to the delta t 
determination; these systematic uncertainties do not affect our conclusions, because they do not 
change the shape of the p.d.f

• The random smearings do affect our conclusions regarding the least variance estimator, 
since they change the p.d.f. !

• One may assume that the smearings are 
Gaussian. The real p.d.f. from which the 20 
timing measurements are drawn is then a 
convolution of a Gaussian with a Box 
distribution.

• Inserting that modification in the generation 
of toys one can study the effect: with 20-
event samples, a Gaussian smearing with 6ns 
sigma is enough to make the expected 
variance equal for the two estimators; for 
larger smearing, one should use the sample 
mean!

• Timing smearings in Opera are likely larger 
than 6ns  They did well in using the sample 
mean after all ! s of Gaussian smearing (ns)

sample mean

sample midrange

Gaussian smearing (ns)
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Drawing home a few lessons

If I managed to thoroughly confuse you, I have reached my 
goal! There are a number of lessons to take home from this:

– Even the simplest problems can be easily mishandled if we do 
not pay a lot of attention 

– Correlations may produce surprising results. The average of 
highly-correlated measurements is an especially dangerous case, 
because a small error in the covariance leads to large errors in 
the point estimate.

– Knowing the PDF your data are drawn from is CRUCIAL (but you 
then have to use that information correctly!)

– Statistics is hard! Pay attention to it if you want to get correct 
results !



Instruction to get a compiling root in 

Windows

• Make sure you have installed visual studio express 11, 
or download it from Microsoft (there is a free version)

• Create the following launch_root.bat file:
> Đall ͞C:\Program Files (x86)\Microsoft Visual Studio 

11.0\Common7\Tools\ǀsǀaƌsϯϮ.ďat͟
> Đd ͞C:\root\ďiŶ͟
> root -l

• Execute the .bat file

• Now in root you can compile your code. I.e., do
root> .L  pippa.C+ to compile it

root> pippa(); to execute it



Backup and proofs



Maximum Likelihood for Gaussian pdf

• Let us take n measurements of a random variable distributed according to a 
Gaussian PDF with m s unknown parameters. We want to use our data {xi} to 
estimate the Gaussian parameters with the ML method. 

• The log-likelihood is

• The MLE of m is the value for which dlnL/dm=0:
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So we see that the ML estimator of the

Gaussian mean is the sample mean.



We can easily prove that the sample mean is a unbiased estimator of the 
Gaussian m, since its expectation value is indeed ʅ:
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The same is not true of the ML estimate of s2,   
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since one can find as above that

The bias vanishes for large n. Note that a unbiased 

estimator of the Gaussian s exists: it is the sample variance

which is a unbiased estimator of the variance for any pdf. But it is not the ML one.
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Expression of covariance matrix of a 

function y of data xi

We take a function y(x) of n random variables xi and calculate
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(as E[y(x)]=y(ʅ) )

Now, as E[y(x)]=y(ʅͿ, Ε[y(x)2]=y(ʅ)2, it follows:



The sample mean is a unbiased 

estimator of the population mean ʅ:
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since, for the definition of expectation value, we have 

it follows that the sample mean is unbiased:



Expectation value of sample variance

That is the reason for the (n-1) factor in the expression of the sample variance,

ǁhiĐh is Đalled ͞Bessel ĐoƌƌeĐtioŶ .͟ Note that this ŵakes it uŶďiased, ďut theƌe 
are other expressions (one which minimizes the MSE for Gaussian data is (n+1)!, but

it is a biased estimator of the population variance!)


