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Statistics for data analysis:
Part 2, with more root exercises

Tommaso Dorigo
INFN Padova



Contents of the hands-on lesson

1. Probabilities of Poisson-distributed data
— with and without nuisances

2. Modeling distributions: the F-test

3. Understanding confidence intervals
— bounded parameter, Gaussian measurement
—  (flip-flopping and undercoverage)

4. Hypothesis testing and goodness of fit
5. Stuff I won't discuss, but you still find in this file for reference

Code for exercises in:
http://www.pd.infn.it/%7Edorigo/Poisson prob fix.C
http://www.pd.infn.it/%7Edorigo/Poisson_prob fluct.C

Mind the underscores >  http://www.pd.infn.it/%7Edorigo/F test commented exercise.C

they are where you http://www.pd.infn.it/%7Edorigo/F _test commented.C

see a space in the name  http://www.pd.infn.it/%7Edorigo/FlipFlop exercise.C
http://www.pd.infn.it/%7Edorigo/FlipFlop.C
http://www.pd.infn.it/%7Edorigo/Coverage.C
http://www.pd.infn.ig/%7Edorigo/Die3a.C (and Die.C and Die2.C)



http://www.pd.infn.it/~dorigo/Poisson_prob_fix.C
http://www.pd.infn.it/~dorigo/Poisson_prob_fluct.C
http://www.pd.infn.it/~dorigo/F_test_commented_exercise.C
http://www.pd.infn.it/~dorigo/F_test_commented.C
http://www.pd.infn.it/~dorigo/FlipFlop_exercise.C
http://www.pd.infn.it/~dorigo/FlipFlop.C
http://www.pd.infn.it/~dorigo/Coverage.C
http://www.pd.infn.ig/~dorigo/Die3.C

1 — Probabilities of Poisson data




Exercise 1 — Poisson probabilities

We want to write a root macro that inputs expected background
counts B (with no error) and observed events N, and computes the
probability of observing at least N, and the corresponding number

of sigma Z for a Gaussian one-tailed test.

The p-value calculation should be straightforward: just

sum from 0 to N-1 the values of the Poisson
(computing the factorial as you go along in the cycle),
and derive p as 1-sum.

Deriving the number of sigmas that p corresponds to
requires the inverse

error function Erflnverse(x) as

Z = sqrt(2) * Erfinverse(1-2p)

(it should be available as TMath::Erflnverse(double) )

You can also fill two distributions, one with the
Poisson(B), the other with only the bins >=N filled (and
with SetFillColor(kBlue) or something) and plot

them overimposed, to get something like the graph on
the right (top: linear y scale; bottom: log y scale)

RECALL:
I’le—
P(n; pu) = ~

y7;

n!




Parenthesis — Erf and Erflnverse

2 oA
erf(x) = ﬁﬁ e~ dt.

The error function and its inverse are useful
tools in statistical calculations — you will
encounter them frequently.

The Erf can be used to obtain the integral of a
Gaussian as

art(x)
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The erfinverse function is used to convert alpha
values into number of sigmas. We will see examples
of that later on.
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One possible implementation

// Macro that computes p-value and Z-value
// of N observed vs B predicted Poisson counts

[ =-reeeeee e
void Poisson_prob_fix (double B, double N) {

int maxN = N*3/2; // extension of x axis

if (N<20) maxN=2*N;

TH1D * Pois = new TH1D ("Pois", "", maxN, -0.5,
maxN-0.5);

TH1D * PoisGt = new TH1D ("PoisGt", "", maxN, -0.5,
maxN-0.5); // we also fill a “highlighted” portion

double sum=0.;
double fact=1.;
for (int i=0; i<maxN; i++) {
if (i>1) fact*=i; // calculate factorial
poisson = exp(-B)*pow(B,i)/fact;
if (i<N) sum+= poisson; // calculate 1-tail integral
Pois->SetBinContent(i+1,poisson);
if (i>=N) PoisGt->SetBinContent(i+1,poisson);
}
double P=1-sum; // get probability of >=N counts
double Z = sqrt(2) * TMath::Erflnverse(1-2*P);

cout << "P of observing N=" << N << " or more
events if B=" <<B<<":P="<<1-sum<<endl;

cout << "This corresponds to " << Z << " sigma
for a Gaussian one-tailed test." << endl;

Pois->SetLineWidth(3);
PoisGt->SetFillColor(kBlue);

TCanvas™ T = new TCanvas ("T","Poisson
distribution", 500, 500);

// Plot the stuff
T->Divide(1,2);
T->cd(1);
Pois->Draw();
PoisGt->Draw("SAME");
T->cd(2);
T->GetPad(2)->SetLogy();
Pois->Draw();
PoisGt->Draw("SAME");



Adding a nuisance

 Let us assume now that B’ is not fixed, but known to
some accuracy og. We want to add that functionality to
our macro. We can start with a Gaussian uncertainty.

Example below: B=5+-4, N=12

You just have to throw a random number
B=G(B’,0;) to set B, and collect a large
number (say 10k) of p-values as before,
then take the average of them.

(why the average ? Would the median be
better ?)

Upon testing it, you will discover that you
need to enforce that B be non-negative.
What we do with the negative B
determines the result we get, so we have
to be careful, and ask ourselves what
exactly do we mean when we say, e.g.,
“B=2.0+-1.0"




Possible implementation

void Poisson_prob_fluct (double B, double SB, double N) {
double Niter=10000;
int maxN = N*3/2;
if (N<20) maxN=2*N;
TH1D * Pois = new TH1D ("Pois", "", maxN, -0.5, maxN-0.5);
TH1D * PoisGt = new TH1D ("PoisGt", "", maxN, -0.5, maxN-0.5);
// We throw a random Gaussian smearing SB to B, compute P,
// and iterate Niter times; we then study the distribution
// of p-values, extracting the average
double Psum=0;
TH1D * Pdistr = new TH1D ("Pdistr", "", 100, -10., 0.);
TH1D * TB = new TH1D ("TB", "",100, B-5*SB,B+5*SB);
cout << "Start of cycle" << end];
for (int iter=0; iter<Niter; iter++) {
// Extract B from G(B,SB)
double thisB = gRandom->Gaus(B,SB);
TB->Fill(thisB); // We keep track of the pdf of the background
if (thisB<=0) thisB=0.; // Note this — what if we had rethrown it ?
double sum=0.;
double fact=1.;
for (int i=0; i<maxN; i++) {
if (i>1) fact*=i;
double poisson = exp(-thisB)*pow(thisB,i)/fact;
if (i<N) sum+= poisson;
Pois->Fill((double)i,poisson);
if (i>=N) PoisGt->Fill((double)i,poisson);

double thisP=1-sum;

if (thisP>0) Pdistr->Fill(log(thisP));

Psum+=thisP;
!
double P = Psum/Niter; // we use the average for our inference here
double Z = sqrt(2) * Erflnverse(1-2*P);

cout << "Expected P of observing N=" << N << " or more events if
B=II

<<B<<"+-"<<SB<<":P="<<P<<endl

cout << "This corresponds to " << Z << " sigma for a Gaussian one-
tailed test." << endl;

// Plot the stuff
Pois->SetLineWidth(3);
PoisGt->SetFillColor(kBlue);
TCanvas* T = new TCanvas ("T","Poisson distribution", 500, 500);
T->Divide(2,2);

T->cd(1);

Pois->DrawClone();
PoisGt->DrawClone("SAME");
T->cd(2);
T->GetPad(2)->SetLogy();
Pois->DrawClone();
PoisGt->DrawClone("SAME");
T->cd(3);
Pdistr->DrawClone();
T->cd(4);

TB->Draw();



2 — Finding the right model




Finding the right model

Often in HEP, astro-hep etc. we do not know what is the true functional
form the data are drawn from

— Can in specific cases use MC simulations; not always

Extracting inference from a spectrum is thus limited:
— “l see a deformation in the spectrum”
— “A deformation from what ?”

Nonetheless, we routinely use e.g. mass spectra to
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These searches have trouble simulating the 200
reconstructed mass spectrum so families of
possible “background shapes” are used

The modeling of the background shape is thus a 50
difficult problem
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Fisher’s F-test

* Suppose you have no clue of the real functional form followed by your data (n points)
— oreven suppose you know only its general form (e.g. polynomial, but do not know the degree)
* You may try a function f,(x;{p,}) and find it produces a good fit; however, you are
unsatisfied about some additional feature of the data that appear to be systematically
missed by the model

* You may be tempted to try a more complex function —usually by adding one or more
parameters to f,
— this ALWAYS improves the absolute y?, as long as the new model “embeds” the old one (the latter
means that given any choice of {p,}, there exists a set {p,} such that f;(x;{p,})==F,(x;{p,})
How to decide whether f, is more motivated than f, , or rather, that the added parameters are
doing something of value to your model ?

Don’t use your eye! Doing so may result in choosing more complicated functions than
necessary to model your data, with the result that your statistical uncertainty (e.g. on an
extrapolation or interpolation of the function) may abnormally shrink, at the expense of a
modeling systematics which you have little hope to estimate correctly.

—> Use the F-test: the function F

Z(yi _fl(xi))z _Z(yi _fz(xi))z

has a Fisher distribution if the
added parameter is not improving

— the model.
F: p2 pl vil2. vy/2 V1+V2 v
Z(yl _‘f‘Z(xi))z Vll sz F T le—l
| T = v 12) s
n —P2 V| v, (Vl _|_V2F) 5



Example of F-test

Imagine you have the data shown on the right, and need
to pick a functional form to model the underlying p.d.f.

At first sight, any of the three choices shown produces a
meaningful fit. P-values of the respective y? are all
reasonable (0.29, 0.84, 0.92)

The F-test allows us to pick the right choice, by
determining whether the additional parameter in going
from a constant to a line, or from a line to a quadratic, is
really needed.

We need to pre-define a size a of our test: we will reject
the “null hypothesis” that the additional parameter is

useless if p<a. Let us pick a=0.05 (ARBITRARY CHOICE!).

We define p as the probability that we observe a F value
at least as extreme as the one in the data, if it is drawn
from a Fisher distribution with the corresponding
degrees of freedom.

Note that we are implicitly also selecting a “region of
interest” (large values of F)!

How many of you would pick the constant model ?
The linear ? The quadratic ?
Would your choice change if a=0.318 (1-sigma)?
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The test between constant and line + J[
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The test between linear and quadratic fit
yields p=0.1020: there is no evidence
against the null hypothesis (that the
additional parameter is useless). We
therefore keep the linear model.
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Playing with the F test

The provided code can be used to get familiar with the use of the F test.

Simple exercise: add functionality to generate exponentially falling data;
check when linear model breaks down, when quadratic model also breaks
down, etcetera, as a function of

— number of events in histogram
— number of bins in histogram
— size of the test

What you need:

1) understand what the code does

2) understand how to generate exponentially falling data
3) code it

4) choose suitable upper range of histogram

In particular, you need to use the integral function of the pdf (we assume gRandom
only provides uniformly-distributed random numbers!)



3 - Confidence intervals

Possible site of crash
(while swinging to starboard)



The simplest confidence interval:
+- 1 standard error

* The standard deviation is used in most simple applications as a measure
of the uncertainty of a point estimate

* For example: N observations {x;} of random variable x with hypothesized
pdf f(x;0), with © unknown. The set X={x,} allows to construct an estimator
0%(X)

* Using an analytic method, or the RCF bound, or a MC sampling, one can
estimate the standard deviation of 0

* The value 0°+- 6" is then reported. What does this mean ?

It means that in repeated estimates based on the same number N of
observations of x, 0 would distribute according to a pdf G(07) centered
around a true value 0 with a true standard deviation G+, respectively
estimated by 6" and 6™

* Inthe large sample limit G() is a (multi-dimensional) Gaussian function

* |n most interesting cases for physics G() is not Gaussian, the large sample
limit does not hold, 1-sigma intervals do not cover 68.3% of the time the
true parameter, and we have better be a bit more tidy in constructing
intervals. But we need to have a hunch of the pdf f(x;0) to start with!




Neyman’s Confidence interval recipe

* Specify a model which provides the probability density
function of a particular observable x being found, for
each value of the unknown parameter of interest:

p(X/I"l) ?_llllllllllllﬁllllgrﬁ_l__

* Also choose a Type-l error rate o (e.q. 32%, or 5%) - 3 -

* For each p, draw a horizontal acceptance interval 6 [ P = ~
[x,X,] such that - L= .

p (xEx,x,] [u)=1-a. S - i == ~

There are infinitely many ways of doing this: it all N - ]
depends on what you want from your data n — ~

— for upper limits, integrate the pdf from x to infinity =+ r = ]

— for lower limits do the opposite n g ]

— might want to choose central intervals - = ’

— or shortest intervals ? 2 == ]
 Ingeneral: an ordering principle is needed to [ «——=== E -
well-define. e = | -]

* Upon performing an experiment, you measure x=x*. - N e
You can then draw a vertical line through it. 0 1 2 3 4 5 6 7

X

—> The vertical confidence interval [, 11,] (with
Confidence Level C.L. = 1 -a) is the union of all values of

U for which the corresponding acceptance interval is
intercepted by the vertical line.



Important notionson C. I’s

What is a vector ? A vector is an element of a vector space (a set with certain properties).

Similarly, a confidence interval is defined to be “an element of a confidence set”, the latter
being a set of intervals defined to have the property of frequentist coverage under sampling!

Let the unknown true value of p be . . In repeated experiments, the confidence intervals
obtained will have different endpoints [u,, 1,], depending on the random variable x.

A fraction C.L. = 1 —a of intervals obtained by Neyman’s contruction will contain (“cover”) the
fixed but unknown p, : P( u.€[y,, W,]) =C.L.=1 -a.

It is important thus to realize two facts:

1) therandom variables in this equation are p,and p,, and not p, !
2) Coverage is a property of the set, not of an individual interval ! For a Frequentist, the interval

either covers or does not cover the true value, regardless of a.
- Classic FALSE statement you should avoid making:
“The probability that the true value is within p; and p, is 68%” !

The confidence interval instead does consist of those values of u for which the
observed x is among the most probable (in sense specified by ordering principle) to be

observed.

Also note: “repeated sampling” does not require one to perform the same experiment all
of the times for the confidence interval to have the stated properties. Can even be different
experiments and conditions! A big issue is what is the relevant space of experiments to consider.



in =
More on coverage 1

Coverage is usually guaranteed by the frequentist Neyman P S ———

construction. But there are some distinguos to make 4 - e o s

Over-coverage: sometimes the pdf p(x|0) is discrete = it may / | £l

not be possible to find exact boundary values x,, x, for each 6; . :

one thus errs conservatively by including x values (according ; fﬂrij

to one’s ordering rule) until Z.p(x;|0)>1-a. e—— e

—> 6, and 0, will overcover

Classical example: Binomial error bars for a small
number of trials. A complex problem!

The (true) variance is o=sqrt(p(1-p)/N) , but

its ESTIMATE c*=sqrt(p*(1-p*)/N) fails badly for
small N and p*-0,1

Clopper-Pearson: intervals obtained from
Neyman’s construction with a central interval
ordering rule. They overcover sizeably for some

values of the trials/successes. = N= 10; 68.27% coverage
Lots of technology to improve properties = ( ;Z_]_)

",
Ll

IIIIIIIIlIIIIlIIIIIIIT"“-

covarage probability

- See Cousins and Tucker, 0905.3831 aa.

o 2 e ] -1}

Best practical advice: use “Wilson’s p=ll+d

score interval” (few lines of code)



http://arxiv.org/PS_cache/arxiv/pdf/0905/0905.3831v2.pdf

Confidence Intervals and Flip-Flopping

* Here we want to understand a couple of issues that the Neyman
construction can run into, for a very common case: the measurement of a
bounded parameter and the derivation of upper limits on its value

* Typical observables falling in this category: cross section for a new
phenomenon; or neutrino mass

e We take the simplifying assumption that we do 3
a unbiased Gaussian-resolution measurement; =
we also renormalize measured values such that §
the variance is 1.0. In that case if pis the true =
value, our experiment will return a value x which
is distributed as 1 , &l .
P(z|p) = —==exp(—(z — p)"/2)
Nota bene: x may assume negative values! :>J_/ observed value x



Example of Neyman construction

= 1o TTTT T[T T

Gaussian measurement with known sigma (o=1 3 ﬂ—llllll—
assumed in graph) of bounded parameter p>=0 S R LA
Classical method for a=0.05 produces upper limit NEN
u<x+1.640 (or p<x+1.28c for a=0.1) (blue lines) b b
— for x<-1.64 this results in the empty set! S0

* in violation of one of Neyman’s own demands S =

(confidence set does not contains empty sets) 2

— Also note: x<<0 casts doubt on 0=1 hypothesis 2 1 =

rather than telling about value of p the result could R

be viewed as a GoF test (analogy with contract Measured Mean x
bridge). Another possibility is to widen the model to
allow o>1

Flip-flopping: “since we observe no significant signal, we proceed to derive upper limits...”
As a result, the upper limits undercover ! (Unified approach by Feldman and Cousins solves
the issue.)



The attitude that one might take, upon measuring, say,

a higgs cross section which is negative (say if your
backgrounds fluctuated up such that N,,.<B,,.), is to
quote zero, and report an upper limit which, in units of
sigma, is

x"P=sqrt(2)*Erfinverse(1-2a)
where a is the desired confidence level. X"P is such that
the integral of the Gaussian from minus infinity to x"P is
1-a (one-tailed test).

If, however, one finds x>D, where D is one’s
discovery threshold (say, 3-sigma or 5-sigma), one
feels entitled to say one has “measured” a non-
zero value of the parameter — a discovery of the
Higgs, or a measurement of a non-zero neutrino
mass. What the physicist will then report is rather
an interval: to be consistent with the chosen test
size a, he will then quote central intervals which
cover at the same level: x, .. +-E(ct/2), with

E(a) = sqrt(2)*Erfinverse(1-2*a).
The confidence belt may then take the form
shown on the graph on the right.

D(x) = % +%erf(%}

20(x)—-1= erf[x—\gj

x"P

J2
¥ = Rerfinv[20 ) 1] -
=\ 2erfinv(1-2a)

= erfinv(2D(x) 1)

- a=0.10,
Z>5 discovery

i 7 i i i i i
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Measured Mean X



Coverage of flip-flopping experiment

We want to write a routine that determines the true coverage of the procedure
discussed above for a Gaussian measurement of a bounded parameter:

<0 -> quote size-a upper limit as if x,.,.=0, x"P=sqrt(2)*Erflnverse(1-2a)

meas<D~> quote size-a upper limit, x"P=sqrt(2)*Erfinverse(1-2a) + X, ...

>=D > quote central value +-0/2 error bars, x,,...+-sqrt(2)*Erflnverse(1-a)

Xmeas
— 0O<=x

Xmeas

Guidelines:

1. insert proper includes (we want to compile it or it’ll be too slow)

2. header: pass through it alpha, D, and N_pexp

3. define useful variables and histogram containing coverage values

4. loop on x_true values from 0 to 10 in 0.1 steps = i=0...<100 steps, x_true=0.05+0.1%i
5. foreach x_true:

1. zeroacounterC
2. loop many times (eg. N_pexp, defined in header)
3. throw x_meas = gRandom->Gaus(x_true,1.)
4. derive x_down and x_up depending on x_meas:
1. if x_meas<0 then x_down=0 and x_up = sqrt(2)*ErfiInverse(1-2*alpha)
2. if 0<=x_meas<D then x_down=0 and x_up=x_meas+sqrt(2)*El(1-2*alpha)
3. if x_meas>=D then x_down,up = x_meas +- sqrt(2)*El(1-alpha)
5. ifx_trueisin[x_down,x_up] C++
6. fill histogram of coverage at x_true with C/N_pexp
7. plot and enjoy



Results

* Interesting typical case: alpha=0.05 - 0.1, D=4-5
* E.g.alpha=0.05, D=4.5, with N_pexp=100000: The coverage, for this special

case, can actually be computed
analytically...

1E Llng e : Just determine the integral of

- coverage: the covered area for each region
0.99 of the belt — see next slide

E Flip-flopping Confidence belt
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Coverage.C

(add at the top the #include commands
needed to compile it)

void Coverage (double alpha, double disc_threshold=5.) {
// Only valid for the following:
/]
if (disc_threshold-sqrt(2)*Erfinverse(1.-2*alpha/2.)<
sqrt(2)*Erflnverse(1.-2*alpha)) {
cout << "Too low discovery threshold, code not suitable. " << endl|;
cout << "Try a larger threshold" << endl;
return;
}
char title[100];
int idisc_threshold=disc_threshold;
int fracdiscthresh =10*(disc_threshold-idisc_threshold);
if (alpha>=0.1) {

sprintf (title, "Coverage for #alpha=0.%d with Flip-Flopping at %d.%d-
sigma", (int)(10.*alpha),idisc_threshold, fracdiscthresh);

}else {

sprintf (title, "Coverage for #alpha=0.0%d with Flip-Flopping at %d.%d-
sigma", (int)(100.*alpha),idisc_threshold, fracdiscthresh);
}

TH1D * Cov = new TH1D ("Cov", title, 1000, 0., 2.*disc_threshold);
Cov->SetXTitle("True value of #mu (in #sigma units)");

// Int Gaus-1:+1 sigma is TMath::Erf(1./sqrt(2.))
// To get 90% percentile (1.28): sqrt(2)*Erfinverse(1.-2*0.1)
// To get 95% percentile (1.64): sqrt(2)*Erfinverse(1.-2*0.05)
double cov;
for (int i=0; i<1000; i++) {
double mu = (double)i/(1000./(2*disc_threshold))+
0.5*(2*disc_threshold/1000);

if (mu<sqrt(2)*Erfinverse(1.-2*alpha)) { // 1.28, so mu within upper 90%
CL

cov = 0.5*(1+TMath::Erf((disc_threshold-mu)/sqrt(2.)));

}else if (mu< disc_threshold-sqrt(2)*Erflnverse(1.-2*alpha/2.)) {//
<3.36

cov = 1.-alpha-0.5*(1.-TMath::Erf((disc_threshold-mu)/sqrt(2.)));
} else if (mu<disc_threshold+
sqrt(2)*Erfinverse(1.-2*alpha)) { // 6.28
cov = 1.-1.5*alpha;
} else if (mu<disc_threshold+sqrt(2)*Erfinverse(1.-2*alpha/2.)) {//
6.64) {

cov = 1.-alpha/2.-0.5*(1+TMath::Erf((disc_threshold-mu)/sqrt(2.)));
}else { cov = 1.-alpha; }
Cov->Fill(mu,cov);
}
char filename[40];
if (alpha>=0.1) {
sprintf(filename,"Coverage_alpha_0.%d_obs_at_%d_sigma.eps",
(int)(10.*alpha),idisc_threshold);
}else {
sprintf(filename,"Coverage_alpha_0.0%d_obs_at_%d_sigma.eps",
(int)(100.*alpha),idisc_threshold);
1
TCanvas * C = new TCanvas ("C","Coverage", 500,500);
C->cd();
Cov->SetMinimum(1.-2*alpha);
Cov->SetLineWidth(3);
Cov->Draw();
C->Print(filename);

// Now plot confidence belt
//




Here is e.g. the exact
calculation of coverage for
flip-flopping at 4-sigma and a
test size alpha=0.05

Can get it by running:

root> .L Coverage.C+;
root> Coverage(0.05,4.);

Coverage for «t=0.05 with Flip-Flopping at 4.0-sigma

0.98

0.96

0.94

0.92

0.9

0 1 2 3 4 5 6 7 8

True value of u (in ¢ units)



One further example of coverage

* Recall the "loaded die" example. We solved it with a likelihood maximization.

* You may modify it to compute the coverage of the likelihood intervals. - Die3a.C

Just add a TH1D* called “Coverage” and a
cycle on the true parameter values, taking
care of simulating the die throws correctly
taking into account the bias t. Then you
count how often the likelihood has the true
value within its interval, as a function of the
true value.

By running it you will find that the coverage is only
approximate for small number of throws,
especially when your true value of the

parameter t (the “increase in probability”

of throws giving a 6) lies close to the

boundaries -1/6, 1/3.
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Summary of previous slides

Handling nuisances is easy with toy MC; playing with them in specific
problems allows you to get a feeling of how dependent your results are on
the size and shape of systematic uncertainties

Modeling a distribution is a unsolvable problem in principle; to do a fair
job and get an approximately valid solution one needs at the very least to
consider a wide spectrum of functional forms and a disciplined method to
choose the right one

Undercoverage is equivalent to reporting a smaller uncertainty than what
you should have — it is BAD especially if you are applying Frequentist tools
and standpoint

Root has tons of built-in functions and tools; getting to know them wiill
make you stronger in your capability of doing statistical analysis on the fly



Possible solutions



Log-normal nuisance in Poisson test

// Macro that computes p-value and Z-value of N observed vs B predicted
// Poisson counts

/]
void Poisson_prob_fluct (double B, double SB, double N, int opt=1) {

double Niter=10000;

if (opt!=0 && opt!=1) {

cout << "Please put fourth argument either =0 (Gaussian nuisance)" << endl;

cout << "or =1 (LogNormal nuisance)" << endl;
return;

}

int maxN = N*2;
TH1D * Pois = new TH1D ("Pois", "", maxN, -0.5, maxN-0.5);
TH1D * PoisGt = new TH1D ("PoisGt", "", maxN, -0.5, maxN-0.5);

// We throw a random Gaussian smearing SB to B, compute P,
// and iterate Niter times; we then study the distribution
// of p-values, extracting the average

double Psum=0;
TH1D * Pdistr = new TH1D ("Pdistr", "", 100, -10., 0.);
TH1D * TB = new TH1D ("TB", "",100, B-5*SB,B+5*SB);

if (opt==0) {// nornal
mu = B;
sigma = SB;
}else {// lognormal
mu = log(B); // median! omitting the convexity correction -sigma*sigma/2;
sigma = SB/B;
}

for (int iter=0; iter<Niter; iter++) {
// Extract B from G(B,SB)
double thisB = gRandom->Gaus(mu,sigma); // normal
if (opt==1) thisB = exp(thisB); // lognormal

TB->Fill(thisB);
if (thisB<=0) thisB=0.;
double sum=0.;
double fact=1.;
for (int i=0; ixmaxN || (opt==0 && i<B+6*SB) || (opt==1 &&
i<mu+10*sigma); i++) {
if (i>1) fact*=i;
double poisson = exp(-thisB)*pow(thisB,i)/fact;
if (i<N) sum+= poisson;
Pois->Fill((double)i,poisson);
if (i>=N) PoisGt->Fill((double)i,poisson);
}
double thisP=1-sum;
if (thisP>0) Pdistr->Fill(log(thisP));
Psum+=thisP;
}
double P = Psum/Niter;
double Z = sqrt(2) * ErfInverse(1-2*P);

cout << "Expected P of observing N=" << N << " or more events if B="
<< B<<"+"<<SB<<":P="<<P<<endl

cout << "This corresponds to " << Z << " sigma for a Gaussian one-tailed
test." << endl;



Exponential model in F-test

double y = gRandom->Uniform(0.,1.);
// Generate histogram of data according to different pdfs
//
if (option==0) {
// int(0:x) dt = x
// quindi genero y=uniform(0:1) e prendo
// x=y*xmax
Data0->Fill(y*xmax);
Datal->Fill(y*xmax);
Data2->Fill(y*xmax);
Data3->Fill(y*xmax);
} else if (option==1) {
// int(0:x) t dt = x~2/2
// quindi genero y=uniform(0:1) e prendo
// x=sqrt(2*y*xmax”"2/2)
Data0->Fill(sgrt(y*xmax*xmax)
Datal->Fill(sgrt(y*xmax*xmax)
)
)

’
’

Data2->Fill(sgrt(y*xmax*xmax
Data3->Fill(sqrt(y*xmax*xmax

’

}else if (option==2) { ' For full code, see
i et yoomform(0:1) e prendo http://www.pd.infn.it/%7Edorigo/F_test_commented.C

// x=pow(y,1/3)*xmax
DataO->Fill(pow(y,0.33333)*xmax);
Datal->Fill(pow(y,0.33333)*xmax);
Data2->Fill(pow(y,0.33333)*xmax);
Data3->Fill(pow(y,0.33333)*xmax);
} else if (option==3) {
// int(0:x) e(-t) dt = (1-e”-x)
// quindi genero y=uniform e prendo
// x=-log(1-y*(1-exp(-xmax)))
DataO->Fill(-log(1-y*(1-exp(-xmax
Datal->Fill(-log(1-y*(1-exp(-xmax
Data2->Fill(-log(1-y*(1-exp(-xmax
Data3->Fill(-log(1-y*(1-exp(-xmax

N
N
N
N

Piece to be added to former version of code

el aRaRNer




Coverage of Flip-flopping measurement

void FlipFlop (double alpha=0.05, double D=4.5, double Npexp=1000) { J/ compute coverage

if (x_true>=x_down && x_true<x_up) covers++;

}

double x_true;
double x_meas;

double sigma =1; .
Coverage_vs_xtrue->Fill(x_true,covers/Npexp);

}

double x_down;

double x_up;

double covers=0.;

double Ela = sqrt(2)*TMath::Erfinverse(1-alpha);
double El2a= sqrt(2)*TMath::Erfinverse(1-2*alpha);

// Belt plot
for (int i=0; i<15000; i++) {
X_meas =-4.9995 +i*0.001;
if (x_meas<0) {
BeltUp->Fill(x_meas,El2a);
BeltDo->Fill(x_meas,0.);
} else if (x_meas<D) {

TH1D * Coverage_vs_xtrue = new TH1D("Coverage_vs_xtrue", "Coverage vs x_true", 100, 0., 10.);
TH1D * BeltUp = new TH1D ("BeltUp", "Flip-flopping Confidence belt", 15000, -5.,10.);
TH1D * BeltDo = new TH1D ("BeltDo", "Flip-flopping Confidence belt", 15000, -5.,10.);

BeltUp->Fill(x_meas,x_meas+EI2a);
BeltDo->Fill(x_meas,0.);
}else {

cout << "Critical values: " << endl;

cout << "For xmeas < 0: 0 < xtrue < " << El2a*sigma << end|;
cout << "For O<xmeas<" << D << " : 0 < xtrue < xmeas+" .
. BeltUp->Fill(x_meas,x_meas+Ela);
<< El2a*sigma << end|; .
BeltDo->Fill(x_meas,x_meas-Ela);

}
}

cout << "For xmeas>=D : xmeas-" << Ela*sigma << " < xtrue < xmeas+"
<< Ela*sigma << end|;
cout << endl;
for (int ix=0; ix<100; ix++) {
gStyle->SetOptStat(0);
x_true = 0.05 + 0.1%ix;

0 TCanvas * W2 = new TCanvas ("W2", "Coverage of flip-flopping NP construction", 500, 500);
covers=0;

for (int 0 N ' W2->cd();
or (int pexp=0; pexp<Npexp; pexp++ . .
PEXP=D; PEXp<Rpexp; pexp Coverage_vs_xtrue->SetLineWidth(3);
. . . . Coverage_vs_xtrue->Draw();

// A Gaussian measurement with uncertainty sigma

X_meas = gRandom->Gaus(x_true,sigma);
- & (x gma) TCanvas * W = new TCanvas ("W", "Confidence belt", 500, 500);

W->cd();
BeltUp->SetMinimum(-1);
BeltUp->SetMaximum(15);
BeltUp->SetLineWidth(3);
BeltDo->SetLineWidth(3);
BeltUp->Draw();
BeltDo->Draw("SAME");

if (x_meas<D) { // Not significantly different from zero, will report upper limit
x_down =0;
x_up = El2a*sigma;
if (x_meas>0) x_up = x_meas + x_up;
}else { // will report an interval
x_down = x_meas-Ela*sigma;
X_up = Xx_meas+Ela*sigma;



Exact calculation of coverage

void Coverage (double alpha, double disc_threshold=5.) {
gStyle->SetOptStat(0);

// Only valid for the following:
//
if (disc_threshold-sqrt(2)*Erflnverse(1.-2*alpha/2.)<
sqrt(2)*Erfinverse(1.-2*alpha)) {
cout << "Too low discovery threshold, code not suitable. " << endl;
cout << "Try a larger threshold" << endl;
return;

}

char title[100];
int idisc_threshold=disc_threshold;
int fracdiscthresh =10*(disc_threshold-idisc_threshold);
if (alpha>=0.1) {
sprintf (title, "Coverage for #alpha=0.%d with Flip-Flopping at %d.%d-sigma",
(int)(10.*alpha),idisc_threshold, fracdiscthresh);
}else {

sprintf (title, "Coverage for #alpha=0.0%d with Flip-Flopping at %d.%d-sigma",

(int)(100.*alpha),idisc_threshold, fracdiscthresh);

}
TH1D * Cov = new TH1D ("Cov", title,

1000, 0., 2.*disc_threshold);
Cov->SetXTitle("True value of #mu (in #sigma units)");

// Int Gaus-1:+1 sigma is TMath::Erf(1./sqrt(2.))
// To get 90% percentile (1.28): sqrt(2)*Erflnverse(1.-2*0.1)
// To get 95% percentile (1.64): sqrt(2)*Erflnverse(1.-2*0.05)

double cov;
for (int i=0; i<1000; i++) {

double mu = (double)i/(1000./(2*disc_threshold))+
0.5*(2*disc_threshold/1000);

if (mu<sqrt(2)*Erfinverse(1.-2*alpha)) {// 1.28, so mu within upper 90% CL
cov = 0.5%(1+TMath::Erf((disc_threshold-mu)/sqrt(2.)));

}else if (mu< disc_threshold-sqrt(2)*Erflnverse(1.-2*alpha/2.)) { // <3.36
cov = 1.-alpha-0.5*(1.-TMath::Erf((disc_threshold-mu)/sqrt(2.)));

} else if (mu<disc_threshold+

sqrt(2)*Erfinverse(1.-2*alpha)) { // 6.28

cov = 1.-1.5*alpha;

} else if (mu<disc_threshold+sqrt(2)*Erflnverse(1.-2*alpha/2.) ) { // 6.64) {
cov = 1.-alpha/2.-0.5*(1+TMath::Erf((disc_threshold-mu)/sqrt(2.)));

}else {
cov = 1.-alpha;

1

Cov->Fill(mu,cov);

}

char filename[40];
if (alpha>=0.1) {
sprintf(filename,"Coverage_alpha_0.%d_obs_at_%d_sigma.eps",
(int)(10.*alpha),idisc_threshold);
}else {

sprintf(filename,"Coverage_alpha_0.0%d_obs_at_%d_sigma.eps",
(int)(100.*alpha),idisc_threshold);
}

TCanvas * C = new TCanvas ("C","Coverage", 500,500);
C->cd();

Cov->SetMinimum(1.-2*alpha);
Cov->SetLineWidth(3);

Cov->Draw();

C->Print(filename);



Testing Hypotheses




Hypothesis testing: generalities

We are often concerned with proving or disproving a theory, or comparing and
choosing between different hypotheses the most credible one, based on some data.

In general this is a different problem than that of estimating a parameter, but the two
are tightly connected.

If nothing is known a priori about a parameter, naturally one uses the data to estimate it;
if however a theoretical prediction exists on a particular value, the problem is more
proficuously formulated as a test of hypothesis.

Within the realm of hypothesis testing one
must distinguish what are more aptly called goodness-of-fit tests:
in that case there is only one hypothesis

(e.g. a particular value of a parameter

as opposed to any other value), so some of the
possible techniques are not applicable

A hypothesis is simple if it is completely
specified; otherwise (e.g. if depending on
the unknown value of a parameter) it is called composite.




Hypothesis Testing: Ingredients

Ho: null hypothesis
H,: alternate hypothesis

Three main parameters in the game:

— o type-l error rate; probability that H, is true although you accept the
alternative hypothesis

— PB: type-Il error rate; probability that you fail to claim a discovery (accept H,)
when in fact H, is true

— 0, parameter of interest (describes a continuous hypothesis, for which H, is a
particular value). E.g. 6=0 might be a zero cross section for a new particle

Common for H, to be nested in H,

Can compare different methods by plotting a vs 3 vs the

parameter of interest

- Usually there is a tradeoff between a and f3; often a
subjective decision, involving cost of the two different errors.
- Tests may be more powerful in specific regions of an interval

(e.g. a Higgs mass)
NB: There is a 1-to-1 correspondence between hypothesis
tests and interval construction. In fact a test of =0 for a Above, a smaller ais paid for
. . . .. by a larger type-Il error
new particle signal equates to asking whether =0 is in the

' _ rate (yellow area)
confidence interval. - smaller power 1-B

T EIT = 3AF



Alpha vs Beta and
power graphs

* Choice of o and [ is conflicting: where to stay in
the curve provided by your analysis method highly
depends on habits in your field

* What makes a difference is the test statistic. N-P
likelihood-ratio test, when available, outperforms
others (NP lemma, see next slide)

* As data size increases, power curve becomes closer
to step function
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The power of a test usually also
depends on the parameter of
interest: different methods may
have better performance in
different parameter space points
UMP (uniformly most powerful):
has the highest power for any 0



For simple hypothesis testing there is a recipe to find the most powerful test. It is
based on the likelihood ratio.

Take data X={X;...X\} and two hypotheses depending on
the values of a discrete parameter: H,={6=06,} vs H,{6=6_}.
If we write the expressions of size a and power 1-f we have

[ (X 16,)dx =«

Wa

1-p=[fu(X16)dx

The problem is then to find the critical region w, such that 1-B is maximized, given a.

We rewrite the expression for power as
ij X10) - (x|6,)x
W(x16,)
which is an expectation value: =E, {MW:HJ
‘LA (X16)

This is maximized if we accept in w, all the values for which [ (X.0,.0)= fo(X16) > .

N 0°>>1 —Ya

/X186,

So one chooses Hyif [, (X,0,,0)>c,
and H, if instead 1.(X,0,,0)<c

In order for this to work, the likelihood ratio must be defined in all space; hypotheses
must be simple. The test above is called Neyman-Pearson test, and a test with such
properties is the most powerful.




Treatment of Systematic Uncertainties

Statisticians call these nuisance parameters

Any measurement in HEP is affected by them: the turning of an observation into a
measurement requires assumptions about parameters and other quantities whose exact
value is not perfectly known - their uncertainty affects the main measurement
— Going from a event count to a cross section requires knowing N, L, €
— measurements which are subsidiary to the main result

sel’ 8trig

Inclusion of effect of nuisances in interval estimation and hypothesis testing introduces
complications. Each of the methods has recipes, but not universal nor always applicable

— Bayesian treatment: one constructs the multi-dimensional prior pdf p(0)ILp(A,) including all the
parameters A, multiplies by p(X,|0,A), and integrates all of the nuisances out, remaining with p(6X,)

— Classical frequentist treatment: scan the space of nuisance parameters; for each point do Neyman
construction, obtaining multi-dimensional confidence region; project on parameter of interest

— Likelihood ratio: for each value of the parameter of interest 6*, one finds the value of nuisances that
globally maximizes the likelihood, and the corresponding L(0*). The set of such likelihoods is called the
profile likelihood.

Each “method” has problems (B: multi-D priors; C: overcoverage and intractability; L:
undercoverage) — will not discuss them here, but note that this is a topic at the forefront of
research, for which no general recipe is valid.

Often used are “hybrid” methods for integrating nuisance parameters out: for instance,
treat nuisance parameters in a Bayesian way while treating the parameter of interest in a
frequentist way, or “profile away” the nuisance parameters and then use any method. Also
possible is using Bayesian techniques and then evaluate their coverage properties.



Notes on Goodness-of-fit tests

If H, is specified but the alternative H, is not, then only the Type | error rate a
can be calculated, since the Type Il error rate B depends on having specified a
particular H;.

In this case the test is called a test for goodness-of-fit (to H,).

Hence the question “Which g.o.f. test is best?” is ill-posed, since the power
depends on the alternative hypothesis, which is not given.

In spite of the popularity of tests which give a statistic from which a p-value
can more readily be computed (in particular x> and Kolomogorov tests), their
ability to discriminate against variations with respect to H, may be poor, i.e.
they may have small power (1-B) against relevant alternative hypotheses

— x? throws away information (sign, ordering)

— Kolmogorov —Smirnov test only sensitive to biases, not to shape variations, and
has terrible performance on tails

It is in general hard to define what is random and what is not. Imagine you
get three p-values of the null hypothesis: would you like to see them evenly
spaced in [0,1] ? Would it induce you to doubt of the null if they all came out
within 0.01 of 0.5 ? What if they are all close to 0.624 ? Or all close to zero ?



More on GoF

In HEP, despite their limitations, Goodness-of-Fit tests are useful for
a number of applications:

— consistency checks

— defining a control region

— model testing

The job of the experimenter is to find a suitable test statistic, and a
region of interest of the latter. An example will clarify matters.



Choosing the region of interest

Feynman’s example:

“Upon walking here this morning, the strangest thing ever
happened to me. A car passed by, and | could read the

plate: JKZ 0533. How weird is that ??! The probability that | oss

saw such a combination of letters and numbers (assuming
they are all used in this country) is one in 10000*263, or
one in eighty-eight millions!”
Correct... The paradox arises from not having defined
beforehand the region of interest!

A more common one: you have a counting experiment
where background is predicted to be 100 events. You
observe 80 events. How rare is that ?

— lll-posed question ! Depends, to say the least, on whether
you are interested only in excesses or in absolute
departures!

— In the first case the region of interest is N>=x, which, for
x=80, corresponds to a fractional area p = 0.977.

— In the second case, the region of interest is |N-100 | >=|x-
100| which for x=80 has an integral p = 0.0455.

— And one might imagine other ways to answer —a no-
brainer being p=e-1°0 1008°/80!
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Combination of p-values

e Suppose you have several p-values, derived from different, independent tests. You
may ask yourself several questions with them.
— What is the probability that the smallest of them is as small as the one | got ?
— What is the probability that the largest one is as small as the largest | observed ?
— What is the probability that the product is as small as the one | can compute with these N values ?

* Please note! Your inference on the data at hand strongly depends on what test you
perform, for a given set of data. In other words, you cannot choose which test to run
only upon seeing the data...

e Suppose anyway you believe that each p-value tells something about the null
hypothesis you are testing, so you do not want to discard any of them. Then one
reasonable (not the optimal!) thing to do is to use the product of the N values. The
formula providing the cumulative distribution of the density of x=lx, can be derived
by induction (see [Roe 1992], p.129) and is

N-1 1 ‘
Fy(x)= XZ; [ log” (x) |

j=0 J:
This accounts for the speed with which the product of N numbers in [0,1] tends to
zero as N grows.

Note, this is just one of MANY ways to construct a single statistic from several p-values.



Some examples
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To start let us take five really uniformly
distributed p-values, x,=0.1, x,=0.3, x3=0.5,
X,=0.7, xs=0.9. Their product is 0.00945, and
with the formula just seen we get
P(0.00945)=0.5017. As expected.

And what if instead x,=0.00001, x,=0.3, x;=0.5,
x,=0.7, xs=0.9 ? The result is P(9.45*107)
=0.00123, which is rather large: one might think
that the chance of getting one in five numbers
as small as 10> must occur only a few times in
10-. But we are testing the product, not the
smallest of the five numbers !

And if now we let x,=0.05, x,=0.10, x,=0.15,
X,=0.20, xs=0.25, the test for the product yields
P(3.75*10°)=0.0258 (see picture on the right).

Also not a compelling rejection of the null...

Compare with what you would get if you had
asked “what is the chance that five numbers are
all smaller than 0.25 ?”, whose answer is
(0.25)°>=0.00098. This demonstrates that the a-
posteriori choice of the test is to be avoided !



The maximum likelihood is a powerful method to estimate parameters,
but no measure of GoF is given, because the expected value of L at
maximum is not known, even under the hypothesis that the data are
indeed sampled from the pdf model used in the fit

The distribution of L, _, can be studied with toy MC > one derives a p-
value that a value as small as the one observed in the data arises, under
the given assumptions

Alternatively, one can bin the data, obtaining estimated mean values of
entries per bin from the ML fit: i A
Vo=, [ f(x;0)dx

L(n|v)
Then one can derive a %2, statistic using the ratio of likelihoods 4 = m

and computing ;(2 =—2log A
since in this case the latter follows a y? distribution.

The quantity A(v)=L(n|v)/L(n|n) differs from the likelihood function by a
normalization factor, and can thus be used for both parameter estimation
and Goodness of fit.



Conclusions

Statistics is NOT trivial. Not even in the simplest applications!

A understanding of the different methods to derive results (eg. for upper limits) is crucial
to make sense of the often conflicting results one obtains even in simple problems

— The key in HEP is to try and derive results with different methods —if they do not agree, we get wary
of the results, plus we learn something

Making the right choices for what method to use is an expert-only decision, so...

You should become an expert in Statistics, if you want to be a good particle physicist (or
even if you want to make money in the financial market)

The slide of this course are nothing but an appetizer. To really learn the techniques, you
must put them to work

Be careful about what statements you make based on your data! You should now know
how to avoid:

— Probability inversion statements: “The probability that the SM is correct given that | see such a
departure is less than x%”

— Wrong inference on true parameter values: “The top mass has a probability of 68.3% of being in the
171-174 GeV range”

— Apologetic sentences in your papers: “Since we observe no significant departure from the
background, we proceed to set upper limits”

— Improper uses of the Likelihood: “the upper limit can be obtained as the 95% quantile of the
likelihood function”
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Stuff | Should Perhaps Skip



Eve fitting: Sensitivity to bumps

| will discuss the quantification of a signal’s significance later on. For now,
let us only deal with our perception of it.

In our daily job as particle physicists, we develop the skill of seeing bumps
—even where there aren’t any

It is quite important to realize a couple of things:

1) a likelihood fit is better than our eye at spotting these things = we should
avoid getting enamoured with a bump, because we run the risk of fooling
ourselves by biasing our selection, thus making it impossible to correctly
estimate the significance of a fluctuation

2) we need to always account for the look-elsewhere effect before we even
caress the idea that what we are seeing is a real effect

- Note that, on the other hand, a theorist with a model in his or her pocket (e.g. one predicting a
specific mass) might not need to account for a LEE — we will discuss the issue later on

3) our eye is typically more likely to pick up a tentative signal in some situations
rather than others — see point one.

4) | will try a practical demonstration of the above now.



Order by significance:

 Assume the background is

flat. Order the three bumps
below in descending order
of significance (first=most
significant, last=least
significant)

Don’t try to act smart — |
know you can. | want you to
examine each histogram and
decide which would honestly
get you the most excited...

Let’s take stock.
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Issues with eye-spotting of bumps

We tend to want all the data points to agree with our imagined bump hypothesis
— easier for a few-bin bump than for a many-bin one
— typical “eye-pleasing” size: a three-bin bump
— We give more importance to outliers than needed

We usually forget to account for the multiplicity of places where a bump could build up
(correctable part of Look-Elsewhere Effect)

In examples of previous page, all bumps had the same local significance (5 sigma);
however, the most significant one is actually the widest one, if we specified in advance
the width of the signal we were looking for! That’s because of the smaller number of
places it could arise.

The nasty part: we typically forget to account for the multiplicity of histograms and
combinations of cuts we have inspected

— this is usually impossible to correct for!

The end result: before internal review, 4-sigma effects happen about 1000 times more
frequently than they should.

And some survive review and get published!



One example: the Girominium

CDF, circa 2000

Tentative resonance found in proton-
antiproton collisions. Fundamental state has
mass 7.2 GeV

Decays to muon pairs; hypothesized bound
state of scalar quarks with 1~ properties

Narrow natural width = observable width
comparable to resolution

Significance: 3.5c

Issue: statistical fluctuation, wide-context LEE
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Evaluating significance: one note

In HEP and astro-HEP a common problem is the evaluation of a significance in a
counting experiment. Significance is usually measured in “number of sigmas”

We have already seen examples of this. It is common to cast the problem in terms of a
Goodness-of-Fit test of a null hypothesis H,

Expect b events from background, test for a signal contributing s events by a Poisson
experiment: then

f(n|b+s) = (b+s)" e (b+s)/n|

Upon observing N, ., can assign a probability to the observation as

N, p—1 bne—b
P(n=N,)=1- >
- n!

Of course, this is not the probability of H, being true !! It is the probability that, H,
being true, we observe N, events or more

Take b=1.1, N_,.=10: then p=2.6E-7 = a 50 discovery. Similar for b=0.05, N_,.=4.

Please note: if you use a small number of events to measure a cross section, you will
have large error bars (whatever your method of evaluating a confidence interval for the
true mean!). For instance if b=0, N=5, Likelihood-ratio intervals give 3.08 < s < 7.58, i.e.
s=5_, 5,"%°% . Does that mean we are less than 3-sigma away from zero ? NO !



Bump hunting: Wilks” theorem

A typical problem: test for the presence of a Gaussian signal on top of a smooth
background, using a fit to B(M) (H,: null hypothesis) and a fit to B(M)+S(M) (H:
alternative hypothesis)
This time we have both Hy and H;. One can thus easily derive the local significance
of a peak from the likelihood values resulting from fits to the two hypotheses. The
standard recipe uses Wilks’ theorem:

— getl, L4

— evaluate -2ALoglL

— Obtain p-value from probability that x*(N4.s)>-2ALogL

— Convert into number of sigma for Gaussian distribution using the inverse of the error function

— Four lines of code !

Convergence of -2AInL to x? distribution is fast. But certain regularity conditions
need to hold! In particular, models need to be nested, and we need to be away
from a boundary in the parameter of interest.

— In principle, allowing the mass of the unknown signal to vary in the fit violates the conditions
of Wilks’ theorem, since for zero signal normalization H, corresponds to any H,(M) (mass is
undefined under H: it is a nuisance parameter present only in the alternative hypothesis);

— But it can be proven that approximately Wilks’ theorem still applies (see [Gross 2010])
— Typically one runs toys to check the distribution of p-values
— but this is not always practical

Upon obtaining the local significance of a bump, one needs to account for the
multiplicity of places where the signal might have arisen by chance.
— Isrule of thumbvalid ? TF = (M, ,,-M,...)/0m



More on the Look-Elsewhere Effect

The problem of accounting for the multiplicity of places where a signal could have arisen by
chance is apparently easy to solve:
— Rule of thumb ?

— Run toys by simulating a mass distribution according to H, alone, with N=N_,. (remember: thou shalt
condition!), deriving the distribution of -2AInL

Running toys is sometimes impractical (see Higgs combination); it is also illusory to believe
one is actually accounting fully for the trials factor
— In typical analyses one has looked at a number of distributions for departures from H,

— Even if the observable is just one (say a M;) one often is guilty of having checked many possible cut
combinations

— Ifasignal appearsin a spectrum, it is often natural to try and find the corner of phase space where it is
most significant; then “a posteriori” one is often led into justifying the choice of selection cuts

— A HEP experiment runs O(100) analyses on a given dataset and O(1000) distributions are checked for
departures. A departure may occur in any one of 20 places in a histogram -2 trials factor is O(20k)

— This means that one should expect a 4-sigma bump to naturally arise by chance in any given HEP
experiment ! (= Well borne out by past experience...) Beware of quick conclusions!

In reality the trials factor depends also on the significance of the local fluctuation (which can
be evaluated by fixing the mass, such that AN, ~1). Gross and Vitells [Vitells 2010]
demonstrate that a better “rule of thumb” is provided by the formula

M _ —M .
TF =k —
Oy
where k is typically 1/3 and can be estimated by counting the average number of local
minima <N>=k (M__-M_. )/o,,

fix



Higgs Searches at LHC

 The Higgs boson has been sought by ATLAS and CMS in all the main production processes
and in a number of different final states, resulting from the varied decay modes:
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 The importance of the goal brought together some of the best minds of CMS and ATLAS, to
define and refine the procedures to combine the above many different search channels,
most of which have marginal sensitivity by themselves

* The method used to set upper limits on the Higgs boson cross section is called CL, and the
test statistics is a profile log-likelihood ratio. Dozens of nuisance parameters, with either 0%
or 100% correlations, are considered

* Results have been produced as a combined upper limit on the “strength modifier” p=o/o,,
as well as a “best fit value” for y, and a combined p-value of the null hypothesis. All of these
are produced as a function of the unknown Higgs boson mass.

 The technology is an advanced topic. We can give a peek at the main points, including the
construction of the CL; statistics and the treatment of nuisances, to understand the main
architecture



Nuts and Bolts of Higgs Combination

The recipe must be explained in steps. The first one is of course the one of writing down extensively the
likelihood function!

One writes a global likelihood function, whose parameter of interest is the strength modifier p. If s and
b denote signal and background, and 0 is a vector of systematic uncertainties, one can generically write
for a single channel:

L(data | u,8) = Poisson ( data | i - s(8) + b(8)) - p(6]6)

Note that 8 has a “prior” coming from a hypothetical auxiliary measurement.

In the LHC combination of Higgs searches, nuisances are treated in a frequentist way

by taking for them the likelihood which would have produced as posterior, given a flat prior,
the PDF one believes the nuisance is distributed from. This differs from the Tevatron and LEP
Higgs searches.

In L one may combine many different search channels where a counting experiment is performed as
the product of their Poisson factors:
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or from a unbinned likelihood over k events, factors such as: !
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L(datalpu, éﬁ']
L(datalf, §)

2) One then constructs a profile likelihood test statistic q, as {;_i# — —21In

Note that the denominator has L computed with the values of u" and 8" that globally
maximize it, while the numerator has 6=6“H computed as the conditional maximum
likelihood estimate, given p.

A constraint is posed on the MLE U" to be confined in O<=p"<=p: this avoids negative
solutions for the cross section, and ensures that best-fit values above the signal
hypothesis p are not counted as evidence against it.

The above definition of a test statistic for CL, in Higgs analyses differs from earlier
instantiations

- LEP: no profiling of nuisances
- Tevatron: p=0 in L at denominator

3) ML values 6 " for H; and 6" for H,
are then computed, given the data
and p=0 (bgr-only) and pu>0

4) Pseudo-data is then generated for the
two hypotheses, using the above ML
estimates of the nuisance parameters.
With the data, one constructs the pdf -
of the test statistic given a signal of v I [ h |:L L
strength u (H,) and p=0 (H,). This way 15 20
has good coverage properties. Test Statistic q,
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5) With the pseudo-data one can then compute the integrals defining p-values for the two
hypotheses. For the signal plus background hypothesis H; one has

oy = P{g, > g s | signal+background) = f (G lpe. E‘”b“ ) dg,,

~obs
. q‘u

and for the null, background-only H, one has

L—py = Pla, = éﬁbs | background-only) = / f(qu]0, Aﬂ ') dq,
q

S qobs
0

6) Finally one can compute the value called CL, as

CL, = p,/(1-py)

CL, is thus a “modified” p-value, in the sense that it describes how likely it is that the
value of test statistic is observed under the alternative hypothesis by also accounting for
how likely the null is: the drawing incorrect inferences based on extreme values of p , is
“damped”, and cases when one has no real discriminating power, approaching the limit
f(q|n)=Ff(q]0), are prevented from allowing to exclude the alternate hypothesis.

7) We can then exclude H, when CL, < a, the (defined in advance !) size of the test. In the
case of Higgs searches, all mass hypotheses H,(M) for which CL.<0.05 are said to be
excluded (one would rather call them “disfavoured”...)



Derivation of expected li

One starts with the background-only
hypothesis p=0, and determines a
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distribution of possible outcomes of
the experiment with toys, obtaining
the CLs test statistic distribution for
each investigated Higgs mass point

From CLs one obtains the PDF of upper
limits pYton pu for each M, . [E.g. on the —>
right we assumed b=1 and s=0 for u=0,

whereas u=1 would produce <s>=1]

Then one computes the cumulative
PDF of pUt \

Finally, one can derive the median and
the intervals for u which correspond to
2.3%, 15.9%, 50%, 84.1%, 97.7%
guantiles. These define the “expected-
limit bands” and their center.

m -
E‘ — fl:qu_1l_|-=ﬂ}
- — fi§ =1}
b i’
o 10°
E 1 Observed value
E L
3 o
Z 10°F :
~-mn L'.
- I . -'r. -
= A 1 . L|-' -
1] =] 10 15 hiﬂ
Test Statistic q,
8
.
el (1
10¢}
10
] |
i} 2 4 1 a3 10 12 14
- 1 T
= 09f '
= o8
£ 07
@ 06
w 05
= 04
S 03}
0.2} e
0.1
0
0 2 4 B [ 10 12

T O5RCL



To test for the significance of an excess of events, given a Mh
hypothesis, one uses the bgr-only hypothesis and constructs

o . Lo L(data|0, 0 .
a modified version of the q test statistic: w0 = —2In (datal0, bp) and /i > 0.

L(datalfi, 0)

This time we are testing any p>0 versus the H, hypothesis.

One builds the distribution f(g,| 0,8, °) by generatlng N 00 -
pseudo-data, and derives a p-value correspondlng toagiven o = Plg > qp") = / f(q0]0, 657°) dqo.
observation as abs

exp(—a?/2) dx

1
3 P2

()

: : : = 1
One then converts p into Z using the relation  p = / 5
Z

where pX2 is the survival function for the 1-dof chisquared.

Often it is impractical to generate large datasets given the
complexity of the search (dozens of search channels and _
sub-channels, correlated among each other). One then relies p‘-’"*“'"”'““-" =

=)

DS |

on a very good asymptotic approximation:
w 10° —

The derived p-value and the corresponding Z value are =~ flg,_ =0
“local”: they correspond to the specific hypothesis that has =10 P
been tested (a specific Mh) as g, also depends on M, (the 2 4o
search changes as M, varies) % 10°

: . > 02}
When dealing with many searches, one needs to get a global = T
p-value and significance, i.e. evaluate a trials factor. How to 10
do it in complex situations is explained in the next slide. 1
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Test Statistic q,



Trials factors in the Higgs search

When dealing with complex cases (Higgs combination), a study comes to help.

Wilks’ theorem does not apply, and the complication of combining many different search
channels makes the option of throwing huge number of toys impractical

Fortunately it has been shown how the trials factor can be counted in. First of all one defines
a test statistic encompassing all possible Higgs mass values:

qo(1757) = max go(myr)
T

This is the maximum of the test statistic defined above for the bgr-only, across the many tests
performed at the various possible masses of the Higgs boson.

One can use an asymptotic “regularity” of the distribution of the above g to get a
global p-value by using a technique derived by Gross and Vidells [Vitells 2010].
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Local minima and upcrossings

One counts the number of “upcrossings” of the distribution of the test statistic, as a function
of mass. Its wiggling tells you how many independent places you have been searching in.

The number of local minima in the fit to a distribution is closely connected to the freedom of
the fit to pick signal-like fluctuations in the investigated range

The number of times that the test statistic (below, the likelihood ratio between H, and H,)
crosses some reference point is a measure of the trials factor. One estimates the global p-
value with the number N, of upcrossings from a minimal value of the q, test statistics (for
which p=p,) by the formula - |
pi " = Plgo(iy) >u) < (N,)+ 3 Pz (u)

The number of upcrossings can be best estimated
using the data themselves at a low value of
significance, as it has been shown that the
dependence on Z is s

a simple negative 8- £ i
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Example

Imagine that you scan the Higgs mass and find a maximum q, of 9,
which according to wstimate 1 . o
p 5 | — erf /2

']

corresponds to a local p-value of 0.13% and a local Z-value of 30,
the latter computed using /x :
p:
4

V2T

1 .
exp(—z*/2) dz = 2 Pp(Z?)

You then look at the distribution of q, as a function of M, and count
the number of upcrossings at a level uy,=1 (where the significance is
Z=1 as per above formulas) finding that there are 8 of them. You
can then get <N > for u=9 using

(ﬂiu} — (*n"';u;;} e (u—uo)/2
which gives <Nu>=0.1465

The global p-value can be then computed as p,,,=0.1465+0.0013
using the formula below. One concludes that the trial factor is
about 100 in this case. ,
" = Plgo(hr) >u) < (Nu)+ 5 Pa(u)



