

Deep Learning
Hands-on

Elisa Ricci

Questions?

Outline

• Deep Learning Frameworks

• Introduction to TensorFlow
– Examples (linear regression, MNIST)

• Introduction to Keras
– Examples (MNIST MLP & CNN)

Deep Learning
Frameworks

Deep Learning Frameworks

• Many different frameworks over the past few years...

Deep Learning Frameworks

Deep Learning Frameworks

[Rubashkin]

• Which framework to choose? Look at GitHub...

Deep Learning Frameworks

[Rubashkin]

Deep Learning Frameworks

[Rubashkin]

Deep Learning Frameworks

[Rubashkin]

Community and Resources

• (Github, groups, discussions...)
– For CNNs Caffe has the largest community
– TensorFlow’ s is already large and growing
– Keras’ community is growing
– Theano’ s and Lasagne’ s community are declining

Theano

• Maintained by Montréal University group

• Pioneered the use of a computational graph

• General machine learning tool

• Symbolic differentiation

• Use of Lasagne and Keras

• Very popular in the research community, but not much elsewhere.
Falling behind

Torch

• Mixed language:
– C/CUDA backend built on common backend libraries
– Lua frontend

• Flexibility: existing building blocks from the community can be easily
integrated

• Automatic differentiation

• Modularity

• Speed

• (People hate Lua) very recently PyTorch→

Caffe

• Pros:
– Especially good for CNN and Computer Vision
– Extremely easy to code
– Easy to use pretrained models
– Matlab and Python interface
– Easy to include different libraries
– Layer as building block and many layers already
implemented online

Caffe

• Cons:
– No auto-differentiation
– Need to write C++/CUDA for new GPU layers
– Not good for RNN
– Cumbersome for big networks (ResNet)

Caffe

• Main steps:
– creation of the training network for learning and test
network(s) for evaluation

– iterative optimization by calling forward/backward and
parameter updating

– (periodical) evaluation of the test networks
– snapshotting of the model and solver state throughout
the optimization

Caffe

• Models:

Caffe

• Solver:

Which framework to chose

[Rubashkin]

Which framework to chose

• You work in industry:
– TensorFlow, Caffe

• You want to work “seriously” on new models (research-oriented):
– TensorFlow, Theano, (Torch)

• You don’t have time and you are just curious about deep learning:
– Keras, Caffe

• You want to use deep learning for educational purposes:
– Keras, Caffe

TensorFlow

TensorFlow

• An open-source software library for Machine Intelligence

• Especially useful for Deep Learning

• For research & industry

TensorFlow

TensorFlow

Tensors: multidimensional arrays

TensorFlow

Tensors: multidimensional arrays

TensorFlow

Flow: Graph describing operations

DataFlow Graph

• Computation is defined as a directed acyclic graph
(DAG) to optimize an objective function

• Graph is defined in high-level language (Python, C++)

• Graph is compiled and optimized

• Graph is executed (in parts or fully) on available low
level devices (CPU, GPU, Android)

• Data (tensors) flow through the graph

TensorFlow Idea

Automatic differentiation

• TensorFlow can compute gradients automatically
– Reverse automatic differentiation
– In a nutshell:

● When you define an operator (op), you also define together how
its derivatives are computed (of course most of the common ops
are already provided).

● After you write a function by stacking a series of ops, the program
can figure out by itself how should the corresponding derivatives
be computed (usually by keeping some computation graphs and
using the chain rule).

● The benefit is obvious as it saves us from working out the math,
writing the code, verifying the derivatives numerically...

Main Components

• The main components of Tensorflow:
– Variables: Retain values between sessions, use for
weights/bias

– Nodes: The operations
– Tensors: Signals that pass from/to nodes
– Placeholders: used to send data between your
program and the tensorflow graph

– Session: Place when graph is executed.

What we do

• Create a graph using code C++ or Python and ask
TensorFlow to execute this graph.

What we do

• Execution

Hello world

• Multiply two numbers
• Main phases:

– Import TensorFlow library
– Build the graph
– Create a session
– Run the session

Hello world

• Multiply two numbers

Placeholders

• Allow exchanging data with your graph variables
through "placeholders".

• They can be assigned when we ask the session to run

Linear Regression

Linear Regression

Linear Regression

MNIST

• Classification of hand-written digits (0-9) from 28x28 pixel greyscale
images (MNIST data set).

• Full data set of 70k examples: http://yann.lecun.com/exdb/mnist

MNIST

• As common in machine learning, the MNIST data is split into three
parts:

– Training: 55,000 images

– Test: 10,000 images

– Validation: 5,000 images.

– Dataset contains pair of images and labels.

– Useful to test hyper parameters and generalization performance

MNIST

• As common in machine learning, the MNIST data is split into three
parts:

– Training: 55,000 images

– Test: 10,000 images

– Validation: 5,000 images.

– Dataset contains pair of images and labels.

– Useful to test hyper parameters and generalization performance

MNIST

• Each image is 28 pixels by 28 pixels.

– We can flatten this array into a vector of 28x28 = 784 numbers.

– Vector representation but loosing structure.

Import data

• Download and read the data automatically:

Import data

• We get:

mnist.train.images: tensor with a shape of [55000, 784]

mnist.train.labels:a [55000, 10] array of floats – vector
notation for class labels.

NN training

• Several things to decide (data, hyperparameters):

– Training data
● Representation (vectors, images, text).
● Normalization

– Architecture
● Layers: type, shape, number.
● Activation functions
● Output type (according to task, e.g. classification/regression) and loss function.

– Learning algorithm
● Initialization.
● Update scheme.
● Learning rate.
● Momentum.
● Regularization (weight decay, dropout).
● Batch normalization
● Stopping criteria

Softmax regression

• Recap: softmax regression to output probabilities
• Two steps: add up the evidence of our input being in certain classes and
then convert evidences into probabilities.

Softmax regression

• Output: As we do a weighted sum of the pixel intensities we can inspect
them.

• Red: negative weights.
• Blue: positive weights.

Softmax regression

• Matrix Notation

MNIST

• We use variables and placeholders to create the model:

– Look at the dimensionality

– What is missing?

MNIST

• Model training:

– Use cross-entropy

– Optimize with gradient descent with a learning rate 0.5.

– Many other optimizers (link)

https://www.tensorflow.org/api_guides/python/train#Optimizers

MNIST

• Run the session

– Training considering mini-batches

– Evaluate performance (are they good?)

TensorBoard

TensorBoard

●Training a massive deep neural network can be
complex and confusing.

●TensorBoard: visualization tools to facilitate
models understanding and debug.

●Visualize graph, plot quantitative metrics about
the execution of the graph, show additional data
like images used, visualize statistics.

TensorBoard

●Modify code to generate summary data.

(1) Create graph and decide which nodes you
would like to collect summary data.

Example MNIST:

● Monitor learning rate and loss.

● Use tf.summary.scalar for to the nodes that output the learning

rate and loss respectively.

TensorBoard

●Modify code to generate summary data.

(1) Create graph and decide which nodes you
would like to collect summary data.

Example MNIST:

● Visualize the distributions of activations coming off a particular
layer, or the distribution of gradients or weights.

● Use tf.summary.histogram.

TensorBoard

●Modify code to generate summary data.

(1) Create graph and decide which nodes you
would like to collect summary data.

The summary nodes are peripheral nodes added
to the graph: none of the ops we are currently
running depend on them.

TensorBoard

●Modify code to generate summary data.

(2) To generate summaries, run all of the summary
nodes.

(2a) Use tf.summary.merge_all to combine them.

(2b) Run the merged summary op, which will generate
a serialized Summary protobuf object with all of your
summary data at a given step.

(5) Write summary data to disk, pass the summary

protobuf to a tf.summary.FileWriter.

TensorBoard

TensorBoard

TensorBoard

●Other features: Embedding visualization.

Keras

Keras

●Keras () means κέρας horn in Greek.

●In the Odyssey it is mentioned that dream spirits are
divided between:
● those who deceive men with false visions, who arrive to Earth through a
gate of ivory

● those who announce a future that will come to pass, who arrive through a
gate of horn.

Keras

●Easy-to-use Python library

●Why Python? Easy to learn, powerful libraries (scikit-
learn, matplotlib...)

●It wraps Theano and TensorFlow (it benefits from the
advantages of both)

●Guiding principles: modularity, minimalism,
extensibility.

Keras

●Use both GPU and CPUs

●Easy to use both convolutional networks and recurrent
networks and combinations of the two.

●Supports arbitrary connectivity schemes (including
multi-input and multi-output training)

●Many easy-to-use tools: real-time data augmentation,
callbacks (Tensorboard visualization)

Keras

●Keras gained official Google support

Keras

●Weaknesses:

●Less flexible

●Some stuff not there yet (no RBM for example)

●Less projects available online (e.g. with respect to
Caffe)

Model

●A model is a sequence or a graph of standalone, fully-
configurable modules that can be plugged together
with as little restrictions as possible.

Model

Sequential Graph

Modularity

●A model is a sequence or a graph of standalone, fully-
configurable modules that can be plugged together
with as little restrictions as possible.

●Modules:
● neural layers

● cost functions

● optimizers

● initialization schemes

● activation functions

● regularization schemes

● your own module

Keras

●Extensibility: modules are easy to add.

●Simplicity: modules should be made extremely simple.

TensorFlow:

Keras:

Install Keras

●Extremely easy:

>> source tensorflow/bin/activate

>> python

>> pip install keras

>> import keras as k

Sequential model

●Sequential models are linear stack of layers

●Treat each layer as object that feeds the next layer

Graph model

● Useful to create two or more independent networks to diverge or merge

● Useful to create multiple separate inputs or outputs

● Different merging layers (sum or concatenate)

Let’s run MNIST again

●Homepage

https://keras.io/

https://keras.io/getting-started/sequential-model-guide/#getting-started
-with-the-keras-sequential-model

●Examples:

https://github.com/fchollet/keras/tree/master/examples

●Let’s compare a MLP and a CNN...

https://keras.io/
https://keras.io/getting-started/sequential-model-guide/#getting-started-with-the-keras-sequential-model
https://keras.io/getting-started/sequential-model-guide/#getting-started-with-the-keras-sequential-model
https://github.com/fchollet/keras/tree/master/examples

Questions?

