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We develop theoretical methodology and write a user-ready computer program to cary out 
the calculations of rotational-vibrational-translational energy transfer in a collision of two 
molecules, within a framework of the mixed quantum/classical theory (MQCT). In this 
approach the translational motion of scattering partners is treated classically, while the 
internal motion of each molecule (rotation, vibration) is described by quantum mechanics [1]. 
Time-dependent framework is adopted, which includes the propagation of mean-field 
trajectories for the translational motion (the Ehrenfest approach), and the time-evolution of 
probability amplitudes for the internal quantum states of the molecules, driven by their 
collision process. Energy is exchanged between the translational, roattional, and vibartional 
degrees of freedom but the total energy is concerved (on average).  

Within MQCT, both integral and differential cross sections can be computed for 
transitions between the individual quantum states of collision partners without “binning” of 
trajectories into any “boxes”, since the 
probability amplitudes carry all nesessary 
information about the state-to-state transitions. 
Moreover, the phases of internal states, 
introduced in the expansion of MQCT 
wavefunction, give rise to the relative phase 
shifts in the equations of motion, and,  together 
with scattering phases (extracted from MQCT 
trajectories), allow to reproduce a rather 
complex pattern of quantum interference in the 
differential cross sections, including that for 
the elastic channel. Recall that neither elastic, 
nor differential cross section can be 
reproduced by purely classical trajectories, due 
to the lack of phase information. However, the 
MQCT approach has phase information 
available which permits to capture the 
quantum interference effects [2,3]. 

Since the translational motion of two 
collision partners is treated classically, MQCT 
cannot describe “shape” resonances populated by tunneling, but we found that Feshbach-type 
resonances, formed by the coupling between open and closed quantum channels, are 
amenable to the MQCT treatment. Namely, the so-called orbiting trajectories in MQCT 
represent the analogue of quantum Feshbach resonances. They produce a pattern of “spikes” 
in the energy-dependence of cross sections, very similar to pattern of quantum resonances at 
low collision energies [2,3].  

Another interesting quantum feature, that MQCT allows describing, is the selection 
rules (allowed vs forbidden transitions) in homonuclear diatomic molecules, such as N2, and 
the propensity rules in polyatomic molecules, such as H2O. Purely classical trajectories do 
not reproduce these properties, and it is often argued that only the full-quantum methods can 
reproduce them. Importantly, MQCT has these features, built rigorously into the state-to-state 
transition matrix. For example, in the case of N2 only the Δj = ±2, ±4, ±6, etc., transitions are 
allowed, others are forbidden, strictly [4]. In the case of H2O the transitions with  Δk = ±1 are 

 
Figure	1:	Rotational	wave	function	of	N2	+	H2	
system	in	MQCT	calculations,	and	the	
molecule-molecule	vector	treated	classically.	

VIRT&L-COMM.25.2023.2

ISSN: 2279-8773



 

 2 

strongly favored [5]. Another relevant quantum phenomenon is indistinguishability of the 
identical collision partners, which can also be described within MQCT by appropriate 
symmetrization of the overall wavefunction, for say H2O + H2O.  

One may think that for MQCT we need a huge number of trajectories (by analogy 
with a purely classical approach) in order to sample all relative orientations of two collision 
partners. This is a common misconception, since the rotational motion of both molecules in 
MQCT is described by wavefunction, so, all relative orientations are captured at once, just 
like in the full-quantum method. Trajectories are used to sample only the orbital angular 
momentum ℓ of two collision partners, treated classically (basically, the dependence of 
opacity function on impact parameter). These dependencies are typically simple, and a few 
dozens of trajectories is often enough. Including every single value of ℓ is required only for 
construction of the differential cross section (to reproduce the interference pattern), but for 
the integral cross section this is not needed, and one can employ an efficient Monte-Carlo 
sampling technique. Moreover, the sampling of collision energies can be conducted at the 
same time, to facilitate the calculation of averaged moieties, such as thermal rate coefficients. 

 The most demanding component of the full-coupled MQCT calculations is 
calculations of the potential gradient averaged over all quantum states of collision partners 
(the mean-field potential) at each time step. But recently we proposed a simplified version of 
MQCT, in which the classical and quantum degrease of freedom can be partially decoupled. 
This method, named adiabatic trajectory, or AT-MQCT, happens to be both efficient and 
accurate [6,7]. For example, using the existing (preliminary) version of MQCT code we 
measured the costs of calculations for H2O + H2 system at collision energy 500 cm-1 (see Fig. 
2). It shows that for 100-200 quantum 
channels the CPU cost of AT-MQCT 
method is almost four orders of 
magnitude lower than that of full-
quantum calculations, and this big 
advantage is expected to hold for 
larger number of channels. Figure 2 
also shows that in practice the cost of 
full-quantum calculations scales as N4 
and becomes absurd reaching years 
for triatomic + triatomic or 
polyatomic + diatomic systems. In 
contrast, the total CPU cost of MQCT 
calculations is expected to remain in 
the range of few hours. Moreover, the 
intrinsic parallelism of the method, 
and a multilevel parallelization 
implemented in our code, permit to 
keep the wall-clock time within few 
minutes (per energy point), making 
MQCT calculations practical.  

 In MQCT program there are ten system types, summarized in Table 1, from the 
simplest rigid-diatom + atom, to the most general case of two asymmetric-top rotor 
molecules. For each system, MQCT calculations can be initiated by indicating the rotational 
and vibrational constants listed in the Table. Those are used by the code to set up and 
diagonalize Hamiltonian matrix for rotational motion (using the basis set of symmetric-top 
functions) in order to determine the rotational states of the system (energies and wave-
functions). In this version of MQCT the vibartional motion is supported for the diatomic 
molecules only, but the goal is to introduse vibration for other system types in the future.  
 

 
Figure	2:	Numerical	cost	of	two	versions	of	MQCT	vs	
full-quantum	calculations	(MOLSCAT),	for	molecular	
systems	of	increasing	complexity	(number	of	channels).	
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Table	1:	Ten	types	of	systems	handled	by	MQCT,	with	required	and	optional	input	

 
The default method in the code is the full-coupled MQCT, named CC-MQCT, but the 

approximate AT-MQCT calculations (mentioned above) can also be requested as an option. 
The third option is a well-known coupled-states approximation, named here CS-MQCT, 
where the Coriolis coupling is neglected.  

Two options are available for computation of the potential coupling matrix. One 
(hystoric) is the traditional expansion of the interaction potential over the basis set of analytic 
functions (spherical harmonics, Wigner D-functions). This option is numerically efficient, but 
is known to have issues with trancation of the basis set for the cases of more complicate 
molecules. Therefore, the default in the code is a brute force integration of matrix elements 
by numerical multidimentional quandrature. In both cases users should supply a PES 
subroutine expressed using a set of Euler angles for each collision partner, relative to the 
molecule-molecule reference frame.  

A detailed user manual and an example of input file for each system type will be 
provided with the code.   
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SYS_TYPE	 Collision	Partners	 Required	Constants	 Channel	Labels	 Optional	Input	

1	 rigid	diatom		
+	atom	

Be,	De	 j	 	

2	 vibrating	diatom		
+	atom	

Be,	De,	ωe,	xe	 j,	v	 vibrational	functions,	
non-equidistant	grid	

3	 symmetric	top		
+	atom	

A,	C	 j,	k,	ε	 	

4	 asymmetric	top		
+	atom	

A,	B,	C	 j,	ka,	kc	 expansion	over		
symmetric	top	basis	

5	 rigid	diatom		
+	rigid	diatom	

Be1,	De1,																	
Be2,	De2	

j1,		
	j2	

	

6	 vibrating	diatom		
+	vibrating	diatom	

Be1,	De1,	ωe1,	xe1,		
Be2,	De2,	ωe2,	xe2	

j1,	v1,	
	j2,	v2	

vibrational	functions,	
non-equidistant	grid	

7	 symmetric	top		
+	rigid	diatom	

A,	C,		
Be,	De	

j1,	k1,	ε1,	
	j2	

	

8	 asymmetric	top		
+	rigid	diatom	

A,	B,	C,		
Be,	De	

j1,	ka1,	kc1,	j2	 expansion	over		
symmetric	top	basis	

9	 asymmetric	top		
+	symmetric	top	

A1,	B1,	C1,														
A2,	C2	

j1,	ka1,	kc1,		
j2,	k2,	ε2	

expansion	over		
symmetric	top	basis	

0	 asymmetric	top		
+	asymmetric	top	

A1,	B1,	C1,														
A2,	B2,	C2	

j1,	ka1,	kc1,		
j2,	ka2,	kc2	

expansion	over		
symmetric	top	basis	
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