
UNIVERSITÀ DEGLI STUDI DI PERUGIA

Dottorato di Ricerca in Matematica ed Informatica per il
trattamento dell’informazione e della conoscenza

XXV ciclo

Settore scientifico disciplinare INF/01

SIMULATION MODELING AND
WORKFLOW DESIGN

AN APPROACH TO GRID ENABLED

DISTRIBUTED APPLICATIONS

Alessandro Costantini

Coordinatore: Relatori:

Prof. Giulianella Coletti Prof. Antonio Laganà

Prof. Osvaldo Gervasi

Prof. Sergio Tasso

A.A. 2011/2012

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

ii

On the cover, the qr-code of COMPCHEM Virtual Organization.

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

iii

Just a note

Qui di nuovo. . . non completamente soddisfatto dalle fatiche e dai con-
tenuti del primo Dottorato (lo ricordo, il primo Dottorato è in Scienze Chi-
miche, Chimica Teorica e Computazionale per la precisione!) e anche un po’
perché preso dalla nostalgia dei bei momenti trascorsi, ho deciso di imbar-
carmi in questa nuova, quanto conosciuta, avventura. Nuove problematiche,
nuovi colleghi, tutto nuovo. . . o quasi! Si, perché in tutto questo una sola
cosa è rimasta inalterata, il gusto e l’emozione che ogni volta provo nel cimen-
tarmi in nuove sfide. Ringrazio per questo i miei supervisori per la possibilità
datami, come ringrazio tutti coloro che in questi anni mi hanno supportato
(e anche sopportato) nelle scelte come nelle iniziative, con i quali ho discusso
(a volte anche aspramente) per la difesa delle rispettive idee e con i quali
ho condiviso momenti professionali, ludici e personali. Inutile fare la lista
dei nomi, le persone che leggono e che mi conoscono si riconosceranno senza
troppi sforzi. Tutto questo ha fatto di me una persona migliore? Non lo so,
quello che so è che, di sicuro, oggi sono una persona più dinamica che sa
un pochino meglio di ieri cosa vuole fare ”da grande”. E per concludere, un
pensiero a coloro i quali si stanno interrogando sul mio terzo Dottorato. Il
destino premia sempre coloro che attendono con fiducia. . . ma anche no!

Here again. . . not completely satisfied with the toil and the contents of
the first PhD (I remember you, my first PhD is in Chemistry, Computational
and Theoretical Chemistry to be precise!) and also taken by the nostalgia of
good times gone, I decided to tackle this new, as well as known, adventure.
New problems, new colleagues, everything new. . . or almost! Yes, because
after all only one thing is unchanged, the taste and the feeling I experience
on new challenges. I have to thank for this my supervisors for the chance
given to me, as I thank those people which in recent years have supported
me (and also tolerate me) in the choices as in the initiatives, with whom I
have discussed (sometimes harshly) for the defense of their ideas and with
whom I shared professional, fun and personal time. Needless to make a list
of names, people who read and who know myself will recognize themselves
without much effort. All of this has made me a better person? I do not know!
What I can say is that, of course, today I am a bit more dynamic person
that knows a bit better than yesterday what he wants to do tomorrow. And
finally, a thought for those who are wondering about my third PhD. The fate
always reward those who wait with confidence. . . or may be not!

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

Contents

Abstract 5

1 Computer simulations 7
1.1 Introduction . 7
1.2 The foundations of computer simulation 8

1.2.1 Systems and Models 8
1.2.2 Time representation 9
1.2.3 The Discrete EVent System 13
1.2.4 Alternative approaches to computing simulation 18

1.3 Statistics and Probability concepts 21
1.3.1 Random numbers . 21
1.3.2 Random numbers generators 22
1.3.3 Stochastic variates . 26
1.3.4 Sampling from some probability distributions 26

1.4 Model validation . 31
1.4.1 Basic concepts in validation 32
1.4.2 Validation techniques 33
1.4.3 Overview on modeling errors 34

1.5 Multiscale Modeling of complex systems 37
1.5.1 Approaches to multiscaling 38
1.5.2 Analytic techniques . 39
1.5.3 Empirical techniques 40
1.5.4 Examples of Multiscale Problems 42

2 Concurrent computing 47
2.1 Introduction . 47
2.2 Concurrency on a single processor 48

2.2.1 Management concurrency 51
2.2.2 Instruction level parallelism 51
2.2.3 Data Level Parallelism 54
2.2.4 Limits of the sequential architectures 57

1

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

2 Contents

2.3 Concurrency on multiple processor 59
2.3.1 Flynn taxonomy . 59
2.3.2 Other taxonomies . 62
2.3.3 Memory architectures 63
2.3.4 The Interconnection infrastructure 65

2.4 Concurrent computing . 70
2.4.1 The a priori design of a parallel application 72
2.4.2 Models of parallelism 75
2.4.3 Tools for parallel programming: MPI 76
2.4.4 The evaluation of performances and scalability 81

2.5 Concurrency on the network: the Grid 82
2.5.1 The foundations of Computer Grids 83
2.5.2 The EMI Project . 85
2.5.3 Towards the European Production Grid 87
2.5.4 EGI Activities and user communities 90

2.6 User Community Software . 93
2.6.1 Tools and fron ends . 93
2.6.2 Services . 95
2.6.3 Workflows and Schedulers 96
2.6.4 Parallelization libraries: MPI 99

2.7 User application in MPI . 99
2.7.1 Linear algebra routines 100
2.7.2 Reactive scattering and Molecular Dynamics 103
2.7.3 CHIMERE multi scale model 105
2.7.4 GPU computing using a cloud approach 109

3 Simulation Workflows 115
3.1 Introduction . 115
3.2 COMPCHEM: the Molecular Science Virtual Organization . . 116

3.2.1 The structure of COMPCHEM 117
3.2.2 The structure of GEMS 118
3.2.3 Implemented applications in GEMS: Interaction and

Fitting . 120
3.2.4 Implemented applications in GEMS: quantum methods 123
3.2.5 Implemented applications in GEMS: classical methods 127

3.3 The service oriented approach 128
3.3.1 A first attempt to build a workflow 128
3.3.2 An advanced Grid-based workflow model 130
3.3.3 Workflow description 132
3.3.4 Benchmark usecases 135
3.3.5 Performances and indications for further development . 139

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

Contents 3

3.4 Workflow extensions to Multi-body systems 142
3.4.1 The GROMACS program overview 144
3.4.2 The workflow articulation of GROMACS 144
3.4.3 Performances measured in COMPCHEM 148
3.4.4 A new distribution schema: merging local Clusters and

Grid resources . 149
3.4.5 Added value: a specialized Visualization Tool 154
3.4.6 The DL POLY program 156

3.5 Moving to a High Performance Grid 160
3.5.1 Potential Energy Surface 162
3.5.2 From dimers to solvation spheres simulations 165
3.5.3 The clathrate formation simulation 171
3.5.4 HiPEG: the HIgh PErformance Grid 174
3.5.5 Evolution of the work 178

Conclusions 181

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

Abstract

Computing simulations aimed at designing and interpreting the behavior
of complex systems are ideally managed through workflows. Workflows [1,2]
are, in fact, tools specifically designed for dealing with data intensive complex
applications as those related to scientific research [3]. Scientific simulations,
in fact, prompt huge requests of computing resources difficult to match even
when using the supercomputers available at large scale computing facilities.
At present, a promising alternative to (not always accessible) supercomputers
is distributed computing on Grid platforms. The possibility of exploiting
Grid technologies and in particular the resources made available by the EGI
Grid production infrastructure [4] has allowed us to design a set of workflows
associated with the Grid Empowered Molecular Simulator (GEMS) [5] within
the activities of the Virtual Organization (VO) COMPCHEM [6].

Accordingly, the thesis is articulated as follows.

The first section deals with the theoretical aspects of computer simulation
and the related most used formalisms. In particular, a comparison of the
main features of continuous and discrete time representations is presented.
The first section continues by discussing probability and statistics methods
useful to understand how to model a probabilistic system, how to validate
such model and how to design the simulation.

The second section deals with the discussion of the evolution of the ICT
technologies from sequential to various forms of concurrency. Then among
concurrent technologies the main features of modern distributed computing
platforms are discussed. In the same section the articulation of the european
production Grid of EGI are illustrated.

The third section deals with the description of the Virtual Organizations
assembled within EGI and of the computational workflows developed for
some GEMS applications.

In particular, this is the case of the workflows developed for the GFIT3C
[7] and ABC [8]applications. GFIT3C is a routine performing the global
fitting of the potential energy surface of few atoms. ABC is an atom-diatom
quantum mechanical reactive scattering program, for which an automatic

5

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

6 Abstract

execution procedure has been developed making use of the CG3Pie [9] high
throughput framework.

Some other complex applications are also considered in the present the-
sis such as GROMACS [10] and DL POLY [11]. For these applications a
workflow able to explore different computing platforms has been assembled
and results coming from a real multiscale study (involving methane hydrate
formation [12]) are presented.

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

Chapter 1

Computer simulations

1.1 Introduction

The identification and pursuit of Grand Challenges has been a hallmark of
the high performance computing arena for well over a decade. In recent
years, different technical communities have begun defining Grand Challenge
problems for their disciplines. In this way a useful focal point for research and
development activities has been provided (in particular for computational
modeling and simulation).

Application and methodological areas of modeling and simulation are
numerous and diverse:

- Designing and operating transportation systems

- Determining requirements for large scale computer networks

- Reengineering of business precesses

- Designing and analyzing manufacturing systems

- Evaluating military applications and logistic requirements

- Evaluating activities in biological systems

- Designing of new material systems

Yet, in dealing with complex systems, like cellular or cognitive ones, mod-
eling and simulations have often played a role of support to the development
of theories and the rationalization of prototype systems rather than predict-
ing the behavior of realistic systems. Only recently efforts of the application
area have made a leap forward to effectively simulate real like situations
(generating so far applications which can be named virtual situations).

7

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

8 1. Computer simulations

1.2 The foundations of computer simulation

Computer simulation has been often considered an extreme technique to solve
hard problems in many different field of research (see for example “Queue
Theory” (QT) [13] and “Operation Research” (OR) [14]). Here we give an
overview of the most used formalisms in order to provide a picture of the main
features of the different approaches and sketch out the role played by simula-
tion in modeling. More specifically we present a technical comparison of the
simulation formalisms, and in particular, the difference between continuous
and discrete time representations. A simulation experiment consists in the
execution of a computer program (the simulation model) with a given set
of initial parameters. The outcome of the experiment is a partially ordered
sequence of the states of the system, where the concept of state is defined
as the set of variables describing the system which are considered relevant
for the observer. From the scientist’s “gedanken” experiment to the formu-
lation of a computable simulation, the definition of some additional elements
is necessary. These elements are the choice of the right time representation,
the number and the type of the state variables. This is an important task
because it is impossible to work out an exact mapping of the modeller’s idea
onto a computer program. This gap is better known as the difference between
the conceptual model and the simulation model. A simulation model, inde-
pendently from the formalism in which it is expressed, is always composed
by

- a set of parameter variables;

- a set of entities or objects (which can be either structurally present or
a volatile, if they are created, live for a time, and are then dropped);

- a set of relations among entities (which, in some cases, are fixed, and
in other cases, vary over time);

- a well-defined time representation or formalism.

1.2.1 Systems and Models

Any real-life environment studied by simulation techniques (or for that mat-
ter by any other OR model) is viewed as a system. A system, in general, is a
collection of entities which are logically related and which are of interest for
a particular application. The following features of a system are of interest:

1. Environment: Each system can be seen as a subsystem of a larger
system.

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

1.2. The foundations of computer simulation 9

2. Interdependency: No activity takes place in total isolation.

3. Sub-systems: Each system can be broken down into sub-systems.

4. Organization: Virtually all systems consist of highly organized elements
or components, which interact in order to carry out the function of the
system.

5. Change: The present condition or state of the system usually varies
over a sufficiently long period of time.

When building a simulation model of a real-life system, one does not simulate
the whole system. He/she rather simulates a set of sub-systems related to
the problems at hand. This involves modeling parts of the system at vari-
ous levels of detail. A simulation model is, instead, used in order to study
real-life systems which do not currently exist. In particular, one is interested
in quantifying the performance of a system under study for various values of
its input parameters. Such quantified measures of performance can be very
useful for managerial decision processes. All the variables of a system under
study can be partitioned into two groups. Variables which are considered
as given and are not to be manipulated (uncontrollable variable) and those
which are to be manipulated till reading a final value named also solution
(controllable variables). The distinction between controllable and uncontrol-
lable variables mainly depends upon the scope of the study. Another charac-
terization of the relevant variables is whether they are affected or not during
a simulation run. A variable whose value is not affected is called exogenous.
A variable having a value determined by other variables during the course
of the simulation is called endogenous . Some of the variables of the system
that are of paramount importance are those used to define the status of the
system. Such variables are known as status variables . These variables form
the backbone of any simulation model. At any instance, during a simulation
run, one should be able to determine how things stand in the system using
these variables. Obviously, the selection of these variables is affected by the
kind of information related to system one wants to maintain.

1.2.2 Time representation

Basically, a simulation model is aimed at reproducing real systems, with a
different scale of space and time (t). Concerning time, systems can be divided
into continuous and discrete ones even when they refer to a continuous time
world. As an example, let us consider the dynamics of a post office. The
observer may be interested in analysing the behaviour and the evolution of

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

10 1. Computer simulations

the queue over time. From this point of view, the system can be considered
discrete. In fact, the evolution of the queue is interesting only in some discrete
instants of time (for example when a client enters or exits the queue). During
the service time, the queue does not change and the simulation model can
ignore it. A discrete view of such system is shown in Figure 1.1 where
entities (customers) are represented by circles and servers are represented by
squares. In most cases systems are intrinsically continuous and they have to
be simulated at each time instant. This kind of models are often expressed as
sets of Ordinary Differential Equations (ODEs), whose interesting property
is to correlate state variables to time. Theoretically, through ODEs it is in
principle possible to analytically compute the exact state of the system at
each time instant. Most frequently, however, ODEs cannot be analytically
solved, and the integration has to be performed numerically. The literature
on numerical integration of ODEs offers a wide variety of techniques. All the
integration methods have in common the fact that they discretize a continuity
variable (most often times that is an ideal candidate for discretization). As
a result, the simulation model turns always in a discrete time representation.
Here “discrete time” means that the systems change in a synchronous way
only at some given instants, just like the model in Figure 1.1. It is important
to remember that a discrete representation is always affected by the loss of
information. If the system is directly represented with a discrete formalism,
the choice of the events considered relevant inevitably excludes other events
considered less relevant. When the system is represented with a continuous
formalism, the loss of information is due to the discretization introduced
by the numerical integration methods. Trying to summarize, a simulation
can be referred to two different categories of time representation: the “time
step” models and the “discrete event” models. Either approaches are used
by the simulator to make a numerical integration of the system. In the “time
step” approach the state of the model is updated at regular intervals of time.
At any interval, any entities in the system evolve. In this case the lost of
precision increases with the size of the time step interval. On the contrary,
the discrete event approach alter the system state only in correspondence of
some particular events. In this case the lost of precision depends on the level
of details introduced by the simulation designer.

Discrete event formalism

Discrete event simulations concern the modeling of a system as it evolves over
time by a representation in which the state variables change instantaneously
at separate points in time (in mathematical terms we can say that the system
is changing a countable numbers of points in time). This points are the ones

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

1.2. The foundations of computer simulation 11

Figure 1.1: A discrete representation of a queue system.

at which an event occurs. Because of the dynamical nature of discrete event
simulation models, we must keep track of the current values of the simulated
time from one value to another and for such reason we are making use of
a special variable (called simulation clock) which gives the current value of
the time in the simulated system. When the model is written in a general
purpose language (like FORTRAN or C), the time units are assumed to be
the same on the input parameters. Due to historical reasons, two principal
approaches have been suggested for advancing the simulation clock:

- next event time advanced: the simulation clock is initialized to zero and
the times of occurrence of future events are determined. The simulation
clock is then advanced to the time of occurrence of the imminent future
event and the system state is updated to account for the event that has
occurred. Then the simulation clock is advanced to the time of the new
imminent event, the state of the system is updated and the future event
times are determined. This process of advancing the simulation clock
from one event time to another is repeated until the predetermined
simulation stopping condition has been reached.

- fixed increment time advance: in this case the time is advanced in fixed
intervals (every t time units)

The fixed increment time advance approach has 2 disadvantages:

1. it can only detect events that occur during interval (t0, t0 + t] at time
(t0+t), thereby introducing errors in the simulation unless events occur
exectly at the beginning or end of the interval;

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

12 1. Computer simulations

2. if the interval between two events is very large compared to t, then the
simulation goes through several unproductive clock increments.

The next event time advanced approach has the disadvantage of requiring
more information to be stored. Moreover the simulation time does not flow
smoothly. Even with those limitations, the next event time advanced ap-
proach is used in the majority of discrete event simulation languages.

The time continuous formalisms

The continuous time representation is based on a set of differential equations
describing the behaviour of some variables over time. Therefore a continuous
simulation model can be reconducted to a numerical integration of the related
set of equations. In order to adopt the appropriate computation method, it
is necessary to group analytical models into two different categories: the
causal and non-causal models. A typical analytical model is expressed by a
system of equations, which can be often solved analytically and sometimes
only numerically. Since the simulation of such systems is strictly based on
numerical integration methods, its solution algorithms depend on the type
of causal relations established among variables. An equation system like the
one in Figure 1.2. can be hierarchically decomposed, in order to determine
the sequence of dependencies.

Figure 1.2: The sequential representation of an equation system.

The implicit causal relations can be explicitly described by the following
relationships:

- y depends on k, b

- b depends on k

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

1.2. The foundations of computer simulation 13

- k is independent.

In order to simulate this system the simulation engine is able to sort the equa-
tions according the causal relation diagram and so computes the variables in
the right order. On the contrary, when a model cannot be sorted, due to a
dependency cycle or algebraic loops, it is considered a non-causal model. The
numerical computation of non-causal set of equations is complicated, since
they must be transformed into an equivalent set of causal relations. Once the
continuous model is expressed as a causal and ordered set of equations it can
be numerically solved by a computer. The most used algorithms to do the
numerical integration are the Euler [15] and the Runge-Kutta [16] ones. The
integration method introduced by Leonard Euler is the simplest one. It is
based on the assumption that the functions remain constant during the time
interval dt. This method is simple and adequate to simulate the most part of
the continuous simulation models, even if it may be affected by a significant
error when the time interval is not short enough. In this case other more
precise methods can be used.

Among these the Runge-Kutta algorithm is the most popular and used.
It finds a better approximation of the rate between t and t + dt, comput-
ing the average of the rates at t and at t + dt, which has been previously
estimated with the Euler method. Although the Runge-Kutta method offer
the advantage of reducing the integration error it may also alter the effect of
sudden shocks, deliberately introduced by the modeller (random noise, step
or pulse functions, and so forth).

1.2.3 The Discrete EVent System

The Discrete Event System Specification (DEVS) [17] method integrates the
continuous and discrete time formalisms in a unified discrete event based
approach. DEVS provides a means for specifying a mathematical object
called a system. Basically, a system has a time base, inputs, states, and out-
puts, and functions for determining next states and outputs given the current
states and inputs. Discrete event systems represent certain constellations of
such parameters just as continuous systems do. For example, the inputs in
discrete event systems occur at arbitrarily spaced moments, while those in
continuous systems are piecewise continuous functions of time. The insight
provided by the DEVS formalism consists of the simple way it character-
izes how discrete event simulation languages specify discrete event system
parameters. On the ground of this abstraction, it is possible to design new
simulation languages with sound semantics that is easier to understand. The
conceptual framework underlying the DEVS formalism is shown in Figure

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

14 1. Computer simulations

1.3 where the model for the ping-pong game is represented. Here each player
(A and B) of Fig. 1.3 bears two events: the input event (receive), and the
output event (send); and two states: Send and Wait. Send state takes 0.1
seconds to send back the ball (that represents the output event), while Wait
maintains the state until the player receives the ball (that represents the in-
put event). The two players are connected by the relationship: the output
event of A is transmitted as input event to player B, and vice versa.

The modeling and simulation activity concerns three basic objects:

Model, which is a set of instructions for generating data comparable to that
observable in the real system. The structure of the model is its set of
instructions. The behavior of the model is the set of all possible data
that can be generated by faithfully executing the model instructions.

Simulator, which exercises the model’s instructions to actually generate its
behavior.

Experimental frame, which captures how the modeler’s objectives impact
on model construction, experimentation and validation.

These basic objects are related by two relationships:

Modeling relationship, linking real system and model, defines how well
the model represents the system or entity being modeled. In general
terms a model can be considered valid if the data generated by the
model agrees with the data produced by the real system in an experi-
mental frame of interest.

Simulation relationship, linking model and simulator, represents how faith-
fully the simulator is able to carry out the instructions of the model.

The basic items of data produced by a system or model are time segments.
These time segments are mappings from intervals defined over a specified time
base to values in the ranges of one or more variables. The variables can either
be observed or measured and the structure of a model may be expressed in a
mathematical language called formalism focusing on the changes of variable
values and generates time segments that are piecewise constant. Thus an
event is a change in a variable value, which occurs instantaneously.

The DEVS formalism

A Discrete Event System Specification is a structure

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

1.2. The foundations of computer simulation 15

Figure 1.3: Representation of DEVS Model for Ping-Pong Game. Each
player, A and B, has his events and his states. The two players are con-
nected by relations.

M =< X,S, Y, δint, δext,λ, ta > (1.1)

where X is the set of inputs, S is a set of states, Y is the set of outputs
δint : S → S is the internal transition function, λ : S → Y is the output
function, ta : S → R+

0,∞ is the time advance function and δext : Q×X → S
is the external transition function where

Q = {(s, e)|s ∈ S, 0 ≤ e ≤ ta(s)} (1.2)

is the total state set and e is the time elapsed since last transition. The
interpretation of these elements is illustrated in Figure 1.4. At any time the
system is in some state, S. If no external event occurs the system will stay
in state S for time ta(s). Notice that ta(s) could be a real number as one
would expect. But it can also take the values 0 and ∞. In the first case, the
stay in state S is so short that no external events can intervene (we say that
S is a transitory state). In the second case, the system will stay in S forever
unless an external event interrupts its slumber. We say that S is a passive
state in this case. When the resting time expires, i.e., when the elapsed
time, e, is equal to ta(s), the system outputs the value, λ(s), and changes
to state λint(s). Output is only possible just before internal transitions. If
an external event x ∈ X occurs before this expiration time, i.e., when the
system is in total state (s, e) with e ≤ ta(s), its state changes to δext(s, e, x).
Thus the internal transition function dictates the system’s new state when no
events have occurred since the last transition. While the external transition
function dictates the system’s new state when an external event occurs, this

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

16 1. Computer simulations

state is determined by the input, x, the current state, S, and how long the
system has been in this state, e, when the external event occurred. In both
cases, the system is then is some new state S � with some new resting time,
ta(s�).

Figure 1.4: Representation of the DEVS elements as decribed by eqs. 1.1
and 1.2

Basic models and connections

To be more specific, modular discrete event models require that we adopt a
view different from that fostered by traditional simulation languages. In fact,
in modular specification in general, a model has to be viewed as possessing
input and output ports through which the interaction with the environment
is mediated. In the discrete event case, events determine values appearing on
such ports. More specifically, when external events, arising outside the model,
are received on its input ports, the model description must determine how
to respond to them. Internal events too, arising within the model change its
state, as manifest themselves as events on the output ports to be transmitted
to other model components.

A basic model contains the following information:

- the set of input ports through which external events are received,

- the set of output ports through which external events are sent,

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

1.2. The foundations of computer simulation 17

- the set of state variables and parameters: two state variables are usually
present, phase and sigma (in the absence of external events the system
stays in the whole current phase for the time given by sigma),

- the time advance function which controls the timing of internal tran-
sitions (when the sigma state variable is present, this function just
returns the value of sigma),

- the internal transition function which specifies to which next state the
system will transit after the time given by the time advance function
has elapsed,

- the external transition function which specifies how the system changes
state when an input is received. In this case the effect is to place the
system in a new phase and sigma thus scheduling it for a next internal
transition; the next state is computed on the basis of the present state,
the input port and value of the external event, and the time that has
elapsed in the current state,

- the confluent transition function which is applied when an input is
received at the same time that an internal transition is to occur,

- the output function which generates an external output just before an
internal transition takes place.

Basic models may be coupled in the DEVS formalism to form a coupled
model. A coupled model tells how to couple (connect) several component
models together to form a new model. This latter model can itself be em-
ployed as a component in a larger coupled model, thus giving rise to hierar-
chical construction. A coupled model contains the following information:

- the set of components,

- the set of input ports through which external events are received,

- the set of output ports through which external events are sent.

These components can be synthesized together to create hierarchical mod-
els having external input and output ports. The coupling specification con-
sisting of:

- the external input coupling which connects the input ports of the cou-
pled to model to one or more of the input ports of the components,

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

18 1. Computer simulations

- the external output coupling which connects output ports of compo-
nents to output ports of the coupled model thus when an output is
generated by a component it may be sent to a designated output port
of the coupled model and thus be transmitted externally,

- the internal coupling which connects output ports of components to
input ports of other components when an input is generated by a com-
ponent it may be sent to the input ports of designated components (in
addition to being sent to an output port of the coupled model)

On the same way, a coupled model can be expressed as an equivalent basic
model in the DEVS formalism. Such a basic model can itself be employed in a
larger coupled model. This shows that the formalism is closed under coupling
as required for hierarchical model construction. Expressing a coupled model
as an equivalent basic model captures the means by which the components
interact to yield the overall behavior.

1.2.4 Alternative approaches to computing simulation

Since the early days of simulations, people have constantly looked for new
and better ways to model a system, as well as a novel way to use existing
computer hardware and software in simulation.

Parallel and distributed simulations

Usually, all the sequential simulations operates basically using the same ap-
proach: a simulation clock and event list interact to determine which event
will be processed next, the clock is advanced to the time of this event and
the computer executes the event logic (i.e. updating state variables, manip-
ulating lists for queues and event, generating random numbers, collecting
statistics). This logic is executed sequentially and the simulation is done in
a single computer. In recent years computer technology has enabled individ-
ual computers or processors to be linked together to parallel or distributed
computing environments (well described in chapter 2). In such environment,
it may be possible to distribute different tasks of a computing part across
individual processors (that may belong or not to the same computing node)
operating at the same time, or in parallel , and thus reduce the overall time
to complete the task.

There are normally four principal benefits to executing a simulation pro-
gram across multiple processors:

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

1.2. The foundations of computer simulation 19

Reduced execution time By subdividing a large simulation computation
into many subcomputations, and executing the subcomputations con-
currently across different processors, one can reduce the execution time.
In computer simulations it may be necessary to reduce execution time
and avoid to wait long periods of time to receive results produced by
the simulation. Alternatively, when used to create a virtual world into
which humans will be immersed, multiple processors may be needed
to complete the simulation computation fast enough so that the simu-
lated world evolves as rapidly as real life. This is essential to make the
computer-generated world “look and feel” to the user just like the real
thing.

Geographical distribution Executing the simulation program on a set
of geographically distributed computers enables one to create virtual
worlds with multiple participants that are physically located at differ-
ent sites.

Integrating simulators on different machines Suppose that flight sim-
ulators for different types of aircraft have been developed by different
manufacturers. Rather than porting these programs to a single com-
puter, it may be more cost effective to ”hook together” the existing
simulators, each executing on a different computer, to create a new
virtual environment. Again, this requires the simulation computation
to be distributed across multiple computers.

Fault tolerance Another potential benefit of utilizing multiple processors
is the increased tolerance to failures. If one processor goes down, it
may be possible for another processor to pick up the work of the failed
machine, allowing the simulation computation to proceed despite the
failure. By contrast, if the simulation is mapped to a single processor,
failure of that processor means the entire simulation must stop.

Web-Based simulations

With the rapid development of the Internet and theWorldWideWeb (WWW),
a natural question arises as to how this gigantic network might be used to
build, share, modify, distribute and run simulations. During the years, a
wide range of issues have arisen in this regard, including client-server ar-
rangements, for increasing processing power, dissemination for simulation
models and result, publication, education and training. While it is difficult
to predict precisely how the internet and the web might affect simulation, it
seems clear that the interest is high and that many people are exploiting a

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

20 1. Computer simulations

variety of ways to use this technology in novel ways to support simulations.
For example, the combination of WWW and Java [18] offers a set of unique
capabilities for computing [19] including transparency of network heterogene-
ity, transparency of operating system heterogeneity, and transparency of user
interface heterogeneity. Web technology has the potential to significantly al-
ter the ways in which simulation models are developed, documented, and
analyzed. The web represents a new way for both publishing and delivering
multimedia information to the world. Web technologies that could be lever-
aged in a simulation support role are numerous. For example, the Hypertext
Markup Language (HTML) [20] provides both document formatting and di-
rect linkage to other documents. This capability can significantly improve
the information acquisition and presentation process for model developers.
Moreover, the power of hypermedia available on the web can also influence
the way models are developed and used. The forms capability of HTML pro-
vides a simple mechanism to construct a graphical user interface that could
be used in web-based simulation modeling environments. The WWW can
also act as a software delivery mechanism and distributed computation en-
gine. Three approaches for web-based can be identified in the literature [21].
Server-hosted simulation allows existing simulation tools to be hosted on a
web server and accessed by clients via normal HTML pages. This approach
has the advantage of using a familiar tool and enables the reuse of existing
models. The disadvantage is that the communication power provided by
animation in these tools is not visible over the web. Client-side simulation
allows simulation tools to use an applets-based approach that minimizes the
learning curve, but on the expense of power and flexibility. The performance
of this type of simulation is also limited by the client machine capabilities.
Java is an example of programming languages that may be used to develop
simulation applications that may be executed on the client machine. Sev-
eral Java based simulation packages and languages have been developed. For
example, Simjava [22] uses a basic discrete event simulation engine and ex-
tends this with Java’s graphical user interface features. JSIM is a Java-based
simulation and animation environment based on both the process interaction
and event scheduling approaches to simulation. It includes a graphical de-
signer that allows for graphical model construction on the web [23]. Silk [24]
is a process-based multithreaded simulation language built in Java. Hybrid
client/server simulation attempts to combine the advantages of server hosted
and client executed simulations. The approach relies on hosting the simula-
tion engine on the server and using Java for visualization of the animation
to provide a dynamic view on the client machine.

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

1.3. Statistics and Probability concepts 21

1.3 Statistics and Probability concepts

The completion of a successful simulation study involves much more than
constructing a flowchart of the system under study, translating the flowchart
into a computer program and then making replications of each proposed sys-
tem configurations. As an example, accounting for the variation of observed
variables as well as the random sampling of observed variables themselves
when it is impossible to represent them exaustively, prompt the use of statis-
tics and probability. As a matter of facts, the use of probability and statistics
to chose inputs, to validate the model and to design the simulation experi-
ments is an integral part of a simulation study.

1.3.1 Random numbers

In a simulation, random numbers generation [25] is used to the end of mak-
ing the simulation more realistic by mimicking some relevant theoretical or
empirical distributions. This is usually pursued by generating a finite uni-
formly distributed set of numbers otherwise known as pseudo-random num-
bers. Pseudo-random numbers can be used either as such or to generate
random numbers from different theoretical or empirical distributions, known
in general as random variates or stochastic variates. There are two main
methods to generating random numbers. In the first approach, a physical
phenomenon is used as a source of randomness from where random numbers
can be generated. Random numbers generated in this way are called true ran-
dom numbers. A true random number generator [25] requires a completely
unpredictable and nonreproducible source of randomness. Such sources can
be found in nature, or they can be created from hardware and software. For
instance, the elapsed time between emissions of particles during radioactive
decay is a well known randomized source. Also, the thermal noise from a
semiconductor diode or resistor can be used as a randomized source. Fi-
nally, sampling human computer interaction processes, such as keyboard or
mouse activity of a user, can give rise to a randomized source. True ran-
dom numbers are ideal for critical applications, such as cryptography, due
to their definitely unpredictable and realistic behaviour. However, they are
less useful in computer simulation, where as will be seen in the following,
where we need to be able to reproduce a given sequence of random num-
bers. In addition, despite their several attractive properties, the production
and storing of true random numbers is very costly. On the contrary the
generation of pseudo-random numbers, which is after all the most popular
approach, is to use a mathematical algorithm. Efficient easy to implement
and use pseudo-random numbers generation algorithms have been developed

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

22 1. Computer simulations

in the past. These algorithms produce numbers in a deterministic fashion.
That is, given a starting value (known as the seed) the same sequence of
random numbers can be produced each time the same seed is used. Despite
its deterministic generation, the generated set of numbers is uniformly dis-
tributed and does not contain repetition for a predetermined size of numbers
as well as other statistical tests. An advantage of generating pseudo-random
numbers in a deterministic fashion is that they are reproducible. In fact, the
same sequence of random numbers is produced each time the pseudo-random
generator is run providing the same seed. This is helpful when debugging
a simulation program, as we typically want to reproduce the same sequence
of events in order to verify the accuracy of the simulation. Pseudo-random
numbers (and, in general, random numbers) are typically generated on de-
mand. That is, each time a random number is required, the appropriate
generator is called returning a random number. Consequently, there is no
need to generate a large set of random numbers in advance and store them
in an array for future use.

1.3.2 Random numbers generators

In general, an acceptable method for generating random numbers must yield
sequences of numbers or bits that are uniformly distributed, statistically inde-
pendent, reproducible, and non-repeating for any desired length. Historically,
the first method for creating random numbers by computer was Von Neu-
man’s mid-square method [26]. His idea was to take the square of the previous
random number and to extract the middle digits. The mid-square method
was relatively slow and statistically unsatisfactory. It was later abandoned
in favour of other algorithms as the congruential method, the Tausworthe
generators, the lagged Fibonacci generators, and the Mersenne twister.

The congruential method

The advantage of this congruential method [27] is that it is extremely sim-
ple, fast, and produces pseudo-random numbers statistically acceptable for
computer simulations. The congruential method uses the following recursive
relationship to generate random numbers.

xi+1 = axi + c(mod m) (1.3)

where xi, a, c and m are all non-negative numbers. Given that the previ-
ous random number was xi, the next random number xi+1 can be generated
by multiplying xi by a and then added to c. Then, the modulus m of the
result. That is, divide the result by m and set xi+1 equal to the remainder

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

1.3. Statistics and Probability concepts 23

of this division. Of this method, known as the mixed congruential method,
a simpler variation (the multiplicative congruential method) utilizing the re-
lationship xi+1 = axi(mod m) can be used. The numbers generated by a
congruential method fall in the interval ranging from 0 and m − 1. Uni-
formly distributed random numbers between 0 and 1 can be obtained by
simply dividing the resulting xi by m. The number of successively generated
pseudo-random numbers after which the sequence starts repeating itself is
called the period. If the period is equal to m, then the generator is said
to have a full period. Theorems from number theory show that the period
depends on m. The larger the value of m, the longer is the period. In or-
der to get a generator started, we further need an initial seed value for x.
The mixed congruential method described in eq. 1.3 can be thought of as a
special case of a following generator:

xi+1 = f(xi, xi−1, . . .) (mod m), (1.4)

where f(. . .) is a function of previously generated pseudo-random num-
bers. A special case of the above general congruential method is the quadratic
congruential generator. This has the form:

xi+1 = a1x
2
i + a2xi−1 + c (mod m) (1.5)

The special case of a1 = a2 = 1, c = 0 and m being a power of 2 has been
found to be related to the midsquare method. Another special case that has
been considered is the additive congruential method, which is based on the
relationship:

f(xi, xi−1, . . . , xi−k) = a1xi + a2xi−1 + · · ·+ akxi−k. (1.6)

Tausworthe generators

Tausworthe generators [28] are additive congruential generators obtained
when the modulus m is equal to 2. In particular,

xi = (a1xi−1 + a2xi−2 + · · ·+ anxi−n)(mod 2) (1.7)

where xi can be either 0 or 1. This type of generator produces a stream
of bits {bi}. In view of this, it is sufficient to assume that the coefficients ai
are also binary. Thus, xi is obtained from the above expression by adding
some of the preceding bits and then carrying out a modulo 2 operation. This
is equivalent to an exclusive OR operation, notated as ⊕ in Table 1.1.

A ⊕ B is true (i.e. equal to 1), when either A is true and B false, or A
is false and B true. Tausworthe generators are independent of the computer
used and its word size and have very long cycles. However, they are too slow
since they only produce bits.

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

24 1. Computer simulations

Table 1.1: Truth table

A B A ⊕ B
0 0 0
0 1 1
1 0 1
1 1 0

The Lagged Fibonacci Generators

The Lagged Fibonacci Generators (LFG) [29] are an important improvement
over the congruential generators, and they are widely used in simulation.
They are based on the well-known Fibonacci sequence, an additive recur-
rence relationship, whereby each element is obtained using the two previously
computed elements, as shown below

xn = xn−1 + xn−2 (1.8)

where x0 = 0 and x1 = 1. The beginning of the Fibonacci sequence is: 0,
1, 1, 2, 3, 5, 8, 13, 21. Based on this recurrence relation, the general form of
LFG can be expressed as follows:

xn = xn−j O xn−k (mod m) (1.9)

where 0 < j < k, and appropriate initial conditions have been set. In
this generator, the next element is determined by combining two previously
calculated elements which lag behind the current element utilizing an alge-
braic operation O. This operation O can be either an arithmetic operation
(addition, subtraction, multiplication) or a binary operation XOR. If O is
an addition, then this LFG is called the Additive LFG (ALFG) [29]. Like-
wise, if O is a multiplication, then the LFG is called the Multiplicative LFG
(MLFG) [29]. The additive LFG is the most frequently used generator. In
this case, the next element is calculated as follows:

xn = xn−j + xn−k (mod M) (1.10)

where 0 < j < k. As can be easily seen, it is very simple to implement
and quite fast to execute. A very long period, equal to mk−1, can be obtained
if m is a prime number. However, using a prime number make the execution
slower. Thus, typically m is set to 232 or 264. In this case the maximum

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

1.3. Statistics and Probability concepts 25

period of the additive LFG is (2k − 1)x2m−1. The multiplicative LFG is
accordingly:

xn = xn−j ∗ xn−k (mod m) (1.11)

where m is set to 232 or 264 and 0 < j < k. The maximum period is
(2k−1)∗2m−3. In general, LFGs generate a sequence of random numbers with
very good statistical properties, and they are nearly as efficient as the linear
congruential generators. Their execution can also be parallelized. However,
LFGs are highly sensitive on the seed. That is, the statistical properties of an
output sequence of random numbers varies from seed to seed. Determining
a good seed, however, for LFGs is a difficult task.

The Mersenne twister

The Mersenne twister (MT) [30] is an important pseudo-random number
generator with superior performance. Its maximum period is 219937−1, which
is much higher than many other pseudo-random number generators, and its
output has very good statistical properties. The MT generates a sequence
of bits, which is as large as the period of the generator after which it begins
to repeat itself. This bit sequence is typically grouped into 32-bit blocks
(i.e., blocks equal to the computer word). The blocks are considered to be
random. The following is the main recurrence relationship for the generation
of random sequence of bits:

xk+n = xk+m ⊕ (xu
k |xl

k+1)A, k ≥ 0 (1.12)

Assuming that each block, represented by x, has a size of w bits, xu
k is

the upper w-r bit of xk,where 0 ≤ r ≤ w, xl
k+1 is the lower bit of xk+1, ⊕ the

exclusive OR, | indicates the concatenation (i.e., joining) of two bit strings,
n the degree of recurrence relation, m the integer in the range of 1 ≤ m ≤ n,
u and l are the additional Mersenne Twister tempering bit shifts and A is
a wxw matrix defined as below so that the multiplication operation in the
above recurrence can be performed extremely fast

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
aw−1 aw−2 aw−3 · · · a0

The recurrence relation is initialized by providing seeds for the first d
blocks, i.e., x0, x1, . . . , xn−1. The multiplication operation xA can be made

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

26 1. Computer simulations

very fast as follows:

xA =

�
x � 1 if x0 = 0
(x � 1)⊕ a if x0 = 1

where a = {aw−1, aw−2, . . . , a0} and x = {xw−1, xw−2, . . . , x0}. At the
last state of the algorithm, in order to increase the statistical properties of
generator’s output, each generated block is multiplied from the right with a
special wxw invertible tempering matrix T. This multiplication is performed
as that with matrix A (see above) and it involves only bitwise operations, as
follows.

y = x ⊕ (x � u)
y = x ⊕ ((x � s) ∧ b)
y = x ⊕ ((x � t) ∧ c)
y = x ⊕ (x � l)

(1.13)

where b and c are block size binary bitmasks (vector parameters), l, s,
t and u are pre-determined integer constants and the �, � indicates the
bitwise left and right shifts.

1.3.3 Stochastic variates

Uniformly distributed pseudo-random numbers are normally referred to as
random numbers and when they follow a specific distribution are called ran-
dom variates or stochastic variates. The most commonly used technique
for generating random variates is the inverse transformation method. This
method is applicable only to cases in which the cumulative density function
can be inverted analytically. Assume that we wish to generate stochastic
variates from a Probability Density Function (PDF) f(x) [31]. Let F (x) be
its cumulative density function. We note that F (x) is defined in the region
[0,1]. We explore this property of the cumulative density function to obtain
the following simple stochastic variates generator. We first generate a ran-
dom number r which we set equal to F (x). The quantity x is then obtained
by the inverse transformation of F as follow:

x = F−1(r) (1.14)

1.3.4 Sampling from some probability distributions

In this section, inverse transformation method has been applied to generate
variates from most common probability distributions giving some examples.

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

1.3. Statistics and Probability concepts 27

Sampling from a uniform distribution

The probability density function of the uniform distribution [32] is defined
as follows (see Figure 1.5):

f(x) =

�
1

b−a a < x < b
0 otherwise

Figure 1.5: Graphical representation of the uniform distribution.

The cumulative density function is:

F (x) =

x�

a

1

b− a
dt =

x− a

b− a
(1.15)

The expectation and variance are given by the following expressions:

E(X) =

b�

a

f(x)xdx =
1

b− a

b�

a

xdx =
b+ a

2
(1.16)

and

V ar(X) =

b�

a

(x− E(X))2F (x)dx =
(b− a)2

12
(1.17)

The inverse transformation method for generating random variates is as
follows

r = F (x) =
x− a

b− a
(1.18)

with x = a+ (b− a)r.

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

28 1. Computer simulations

Sampling from an exponential distribution

The probability density function of the exponential distribution [32] is defined
as follows:

f(x) = ae−ax, a > 0, x ≥ 0 (1.19)

Starting from eq.1.19, the cumulative density function is

F (x) =

x�

0

f(t)dt =

x�

0

aeattdt = 1− e−ax (1.20)

The expectation and variance are given by the following expressions

E(X) =

∞�

0

aet−atdt dt =
1

a
(1.21)

and

V ar(X) =

∞�

0

(t− E(X))2e−attdt dt =
1

a2
(1.22)

By applying the inverse transformation method for generating random
variates one obtains

r = F (x) = 1− e−ax (1.23)

or

x = −1

a
log(1− r) (1.24)

Since 1 − F (x) is uniformly distributed in [0,1], the equation becomes
r = e−ax and this leads to x = − 1

a log r.

Sampling from a normal distribution

A random variable X with probability density function

f(x) =
1

σ
√
2π

e−
1
2

(x−µ)2

σ2 , −∞ < x < +∞ (1.25)

where σ is positive, is said to have a normal distribution with parameters
µ and σ. The expectation and variance of X are µ and σ2 respectively. If
µ = 0 and σ = 1, then the normal distribution is known as the standard
normal distribution and its probability density function is as follow

f(x) =
1

σ
√
2π

e−
1
2x

2
, −∞ < x < +∞ (1.26)

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

1.3. Statistics and Probability concepts 29

If a random variable X follows a normal distribution with mean µ and
variance σ2, then the random variable Z can be defined as follows

Z =
X − µ

σ
. (1.27)

In order to generate variates from a normal distribution with parameters
µ and σ, we employ the central limit theorem [33]. The central limit theorem
briefly states that if x1, x2, . . . , xn are n independent random variates, each
having the same probability distribution with E(Xi) = µ and V ar(Xi) = σ2,
then the sum

�
Xi = X1 +X2 + · · ·+Xn approaches a normal distribution

as n becomes large. The mean and variance of this normal distribution are
given by the following equations

E
��

Xi

�
= nµ (1.28)

V ar
��

Xi

�
= nσ2 (1.29)

The procedure for generating normal variates requires k random numbers
r1, r2, . . . , rk. Since each ri is a uniformly distributed random number over
the interval [0,1], we have that

E(ri) =
a+ b

2
=

1

2
(1.30)

V ar(ri) =
(b− a)2

12
=

1

12
(1.31)

Using the Central Limit theorem the sum
�

ri of these k random numbers
approaches the normal distribution as follows

�
ri ∼ N

�
k

2
,

k√
12

�
(1.32)

that is �
ri − k/2

k/
√
12

∼ N(0, 1) (1.33)

If we consider the normal distribution with parameters µ and σ from
which we want to generate normal variates x then from eqs. 1.32 and 1.33
we have

x− µ

σ
=

�
ri − k/2

k/
√
12

(1.34)

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

30 1. Computer simulations

that became the following

x = σ

�
12

k

��
ri −

k

2

�
+ µ. (1.35)

This equation provides us with a simple formula for generating normal
variates with a mean µ and standard deviation σ. The value of k has to be
very large, became the larger it is the better is the accuracy.

Sampling from binomial distribution

In a binomial distribution [32] let assume that p is be the probability of
success and q = 1− p the probability of a failure. If X is a random variable
indicating the number of successes in n trials, it will follow the Binomial
distribution. The probability density function of X is represented by the
following equation

p(k) =

�
n

k

�
pk qn−k, k = 0, 1, 2, . . . (1.36)

where k is the number of successes in n trials. The expectation and
variance of the binomial distribution are:

E(X) = np (1.37)

and
V ar(X) = npq (1.38)

We can generate variates from a binomial distribution with a given p and
generating n random numbers (after setting a variable k0 equal to zero). For
each random number ri, i = 1, 2, . . . , n, a check is made and the variable ki
is incremented as follows:

ki =

�
ki−1 + 1 if ri < p
ki−1 if ri > p

The final quantity kn is the binomial variate.

Sampling from a Poisson distribution

The Poisson distribution [32] models the occurrence of a particular event
over a time period. Let λ be the average number of occurrences during a
unit time period, then the number of occurrence x during a unit period has
the following probability density function

p(n) = e−λ(λn/n!), n = 0, 1, 2, . . . (1.39)

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

1.4. Model validation 31

It can be demonstrated [34] that the time elapsing between two successive
occurrences of the event is exponentially distributed with mean 1/λ, i.e.,
f(t) = λe − λt. One method for generating Poisson variates involves the
generation of exponentially distributed time intervals t1, t2, t3, . . . with an
expected value equal to 1/λ. These intervals are accumulated until they
exceed 1, the unit time period

n�

i=1

ti < 1 <
n+1�

i=1

ti (1.40)

The stochastic variate n is simply the number of events occurred during
a unit time period. Now, since ti =

1
−λ log ri, n can be obtained by simply

summing up random numbers until the sum for n + 1 exceeds the quantity
e−λ as evidenced in the equation

n�

i=1

ri > e−λ >
n+1�

i=1

ri. (1.41)

1.4 Model validation

Simulation models are increasingly being used to solve problems and to aid
in decision-making. Starting from this assumption, a model should be devel-
oped for a specific purpose (or application) and its validity determined with
respect to that purpose. If the purpose of a model is to answer a variety of
questions, the validity of the model needs to be determined with respect to
each question. Numerous sets of experimental conditions are usually required
to define the domain of a model’s intended applicability. In fact, a model
may be valid for one set of experimental conditions but not valid in another.
Moreover, a model is considered valid for a set of experimental conditions if
its accuracy is within an acceptable range defined by considering the overall
aspects that the model is able to satisfy.

This usually requires that the output variables of interest (i.e., the model
variables used in answering the questions that the model is being developed
to answer) have to be identified and their required amount of accuracy be
specified. The model validation is a non costless practice. In fact, it can
be quite significant, especially when extremely high confidence is required to
the model. In Figure 1.6 a typical trend of the costs in function of the model
confidence is reported.

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

32 1. Computer simulations

Figure 1.6: Representation of the costs of a model respect to its confidence.
The graph show the exponential evolution of costs approaching the 100% of
confidence.

1.4.1 Basic concepts in validation

There are four basic approaches for deciding whether a simulation model
is valid. Each of the approaches requires the model development team to
conduct verification and validation as part of the model development process.

The first approach, the most frequently used one, is for the model devel-
opment team itself to make the decision as to whether a simulation model is
valid. A subjective decision is made based on the results of the various tests
and evaluations conducted as part of the model development process.

However, as this approach is extremely dependent by the development
team, it is usually better to use one of the two approaches, depending on
which situation applies.

In the second approach the user(s) of the model is heavily involved with
the model development team in deciding the validity of the simulation model.
In this approach the focus of determining the validity of the simulation model
moves from the model developers to the model users aiding in model credi-
bility.

The third approach, usually called Independent Verification and Vali-
dation (IV&V) [35], uses a third independent party to decide whether the
simulation model is valid. The third party is independent from both the sim-
ulation development team(s) and the model user(s). The IV&V approach is
mainly used when developing large-scale simulation models, whose develop-

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

1.4. Model validation 33

ments usually involve several teams. This approach is also used to increase
the model credibility, especially when the problem tackled by the simulation
model is associated with high costs. In this approach the third party must
have a deeper understanding of the intended purpose(s) of the simulation
model in order to lead the group in their choices.

The last approach for determining whether a model is valid is to use a
scoring model [36,37]. Scores (or weights) are determined subjectively when
conducting various aspects of the validation process and then combined to
determine category scores and an overall score for the simulation model. A
simulation model is considered valid if its overall and category scores are
greater than some passing score(s). This approach is seldom used in practice
because a model may receive a passing score and yet have a defect that have
to be corrected, the passing scores must be decided in a subjective way, the
score(s) may cause over confidence in a model arguing that one model is
better than another.

1.4.2 Validation techniques

Several techniques [38] used to verify and validate the submodels and the
overall model have been developed and tested in the years. The most used
are reported and described in this section.

Animation: The operational behavior of the model is displayed graphically
as the model moves through time. For example the movements of parts
through a factory during a simulation run are shown graphically.

Comparison to Other Models: Various results of the simulation model
being validated are compared to results of other (possible valid) models.
As an example, simple cases of a simulation model are compared to
known results of analytic models, and the simulation model is compared
to other simulation models that have been validated.

Degenerate Tests: The degeneracy of the behavior of a model is tested by
appropriate selection of values of the input and internal parameters.

Event Validity: The events of occurrences of the simulation model are com-
pared to those of the real system to determine if they are similar. For
example, compare the number of fires in a fire department simulation.

Extreme Condition Tests: The model structure and outputs should be
plausible for any extreme and unlikely combination of levels of factors in
the system. For example, if in-process inventories are zero, production
output should usually be zero.

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

34 1. Computer simulations

Face Validity: Asking individuals knowledgeable about the system whether
the model and/or its behavior are reasonable. For example, is the
logic in the conceptual model correct and are the model’s input-output
relationships reasonable?

Internal Validity: Several runs of a stochastic model are made to deter-
mine the amount of stochastic variability in the model. A large amount
of variability (lack of consistency) may cause the model results to be
questionable and if this came from the problem entity, appropriateness
of the policy or system being investigated may be questionable.

Operational Graphics: Values of various performance measures (e.g., the
number in queue and percentage of servers busy) are shown graphically
as the model runs. In this way the dynamical behaviors of performance
indicators are visually displayed as the simulation model runs through
time to ensure they behave correctly.

Parameter Variability - Sensitivity Analysis: This technique consists
of changing the values of the input and internal parameters of a model
to determine the effect upon the model behavior or output. The same
relationships should occur in the model as in the real system. This tech-
nique can be used both qualitatively (directions only of outputs) and
quantitatively (both directions and (precise) magnitudes of outputs).
Those parameters that are sensitive, (i.e., cause significant changes in
the model behavior or output) should be made sufficiently accurate
prior to using the model.

Predictive Validation: The model is used to predict (forecast) the system
behavior that is then compared with the model forecast to determine
possible incongruences. The system data may come from an operational
system or be obtained by conducting experiments on the system itself.

Traces: The behavior of different types of specific entities in the model are
traced (followed) through the model to determine if its logic is correct
and if the necessary accuracy is obtained.

Turing Tests: Individuals who are knowledgeable about the operations of
the system being modeled are asked if they can discriminate between
system and model outputs [39]. (Schruben 1980)

1.4.3 Overview on modeling errors

Assuming that the parametrized model to be validated takes the form,

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

1.4. Model validation 35

xm(t) = fm(xm(t), θm, u(t), t) (1.42)

where xm(t) ∈ Rn is the state variable vector of the model, u(t) ∈ Rp

is the input vector, and θm is the model parameter vector, which is
known. On the basis of this model, the real behavior of the system can
generally be represented as,

xr(t) = fm(xr(t), θm, u(t), t) + em(t) (1.43)

where xr(t) ∈ Rn is the state vector of the system, em(t) ∈ Rn is the
modeling error vector. It is assumed in equation 1.43 that the real
system has the same number of state variables as the model. This rep-
resentation does not limit the generality of the representation since the
errors introduced by erroneous state aggregations in deriving model (eq.
1.42) can also be represented by the error term em(t). In order to make
the modeling error identication possible, an appropriate representation
of the error term em(t) in equation 1.43 is required. This representation
should be obtained by making use of the a priori knowledge about the
possible modeling errors. Basically, modeling errors may be introduced
in each stage of the modeling process.

The a priori knowledge concerning the modeling errors can be ob-
tained through the analysis of the modeling process and the model
itself making use of mathematical representation that allows the iden-
tification of the modeling errors by comparing the outputs coming from
the observed system with data produced by simulation of the erroneous
model.

Improperly defined Experimental Frame

In defining the boundaries of the process or system to be modelled,
some important components may be missed, some significant distur-
bances to the system may be improperly neglected and so on. All
of these aspects introduce errors into the model. The Experimental
Frame is the formalization of the experimental conditions (inputs ap-
plied to the system, outputs observed, criteria of acceptance, . . .) and
as such the above mentioned modeling errors can be formally expressed
as Experimental Frame errors [40].

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

36 1. Computer simulations

Improperly characterized Model Structure

Due to lack of knowledge of the mechanism of the process to be mod-
elled, or due to an oversimplification of the model, a wrong model
structure can be assumed. Typical errors include choosing an incorrect
number of state variables or incorrectly assuming non-linear behav-
ior. Structural errors may accidentally be produced through incorrect
choice of parameters (usually, 0), whereby some part of the model struc-
ture vanishes, thereby altering the model structure.

Inaccurate estimates of the Model Parameters

Either by improper or inadequate data used for parameter estimation
or by ill designed estimation algorithms, incorrect parameter values
may be used.

Usually, each modeling error affects only a subspace of the n-dimensional
state space, and can hence be represented in equation 1.43 with a term
Fidi(t), where Fi ∈ Rnxsi and di ∈ Rsi . The vectors of Fi span the sub-
space affected by the concerned modeling error. Whereas Fi is called
the feature vector or feature matrix of the modeling error, di(t) repre-
sents the magnitude of the modelling error, and is generally unknown
and time-varying. Thus, equation 1.43 can be rewritten as,

xr(t) = fm(xr(t), θm, u(t), t) +
n�

i=0

Fidi(t) (1.44)

Since it is usually not possible to predict all possible modeling errors,
it is necessary to include a special feature matrix (F0) in equation 1.44
to represent modeling errors which were not explicitly modelled. Obvi-
ously, the n-dimensional identity matrix is suitable for that purpose. To
allow for meaningful error identification, some assumptions are made
with respect to equation 1.44:

- The individual errors are written in ?additive? form:

νr = ν + δν (1.45)

Such a choice of individual error terms is always possible without
loss of generality.

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

1.5. Multiscale Modeling of complex systems 37

- Simultaneously occurring errors are assumed to be either additive,
or sufficiently small to allow for an linear approximation:

f(A+ δA,B + δB) ∼= f(A,B) +
∂f

∂A
(A,B)δA+

∂f

∂B
(A,B)δB

(1.46)

with A and B different errors. Though such an assumption, non-
linear effects can always be lumped into an extra error term using
the F0 special feature matrix mentioned above.

1.5 Multiscale Modeling of complex sys-
tems

Simulation based on multiscale modeling and computation is a rapidly
evolving area of research that is having a fundamental impact on com-
putational science and applied mathematics and will influence as well
the way we view the relationship between mathematics and science.
Even though multiscale problems have been studied in mathematics
since long, the current excitement is driven mainly by the use of math-
ematical models in the applied sciences like material science, chemistry,
fluid dynamics, and biology. Problems in these areas are often multi-
physics in nature. Namely, the processes occurring at different scales
are governed by physical laws having a different character. For exam-
ple, quantum mechanics at one scale and classical or fluid mechanics at
another. Emerging from this intense activity is a need for new math-
ematics and new ways of interacting with mathematics. Fields such
as mathematical physics and stochastic processes, which have so far
remained in the background as far as modeling and computation of
complex systems starting from first principles is concerned, will move
to the front. New questions will arise, new priorities will be set as a
result of the rapid evolution in the computational fields.

There are several reasons for the timing of the current interest. Model-
ing at the level of a single scale, such as molecular dynamics or contin-
uum theory, is becoming relatively mature. Our computational capa-
bility has reached the stage in which serious multiscale problems can be
considered (and there is an urgent need from science and technology,
nano-science being a good example) for multiscale modeling techniques.

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

38 1. Computer simulations

1.5.1 Approaches to multiscaling

A traditional multiscale approach is a Fourier analysis that has since
long been used as a way of representing functions according to their
components at different scales. More recently, this multiscale, mul-
tiresolution representation has been made much more efficient through
wavelets. On the computational side, several important classes of nu-
merical methods have been developed which address explicitly the mul-
tiscale nature of the solutions. These include multigrid methods, do-
main decomposition methods, fast multipole methods, adaptive mesh
refinement techniques, and multiresolution methods using wavelets.
From a modern perspective, the computational techniques described
above are aimed at efficient representation or solution of the fine-scale
problem. For many practical problems, full representation or solution
of the fine-scale problem is simply impossible for the foreseeable future
because of the overwhelming computational costs. Therefore we must
seek more efficient alternative approaches.

Protein folding is a typical example of multiple time scales. While the
time scale for the vibration of the covalent bonds is on the order of fem-
toseconds (10−15 s), folding time for the proteins may very well be on
the order of seconds. Well-known examples of problems with multiple
length scales include turbulent flows, mass distribution in the universe,
and vortical structures on the weather map [41]. At the same time dif-
ferent physical laws may be required to describe the system at different
scales. Take the example of fluids. At the macroscale (meters or mil-
limeters), fluids are accurately described by the density, velocity, and
temperature fields, which obey the continuum Navier-Stokes equations.
On the scale of the mean free path, it is necessary to use kinetic theory
(Boltzmann’s equation) to get a more detailed description in terms of
the one-particle phase-space distribution function. At the nanometer
scale, molecular dynamics in the form of Newton’s law has to be used
to give the actual position and velocity of each individual atom that
makes up the fluid. If a liquid such as water is used as solvent for
protein folding, then the electronic structures of the water molecules
become important, and these are described by Schrödinger’s equation
in quantum mechanics. The boundaries between different levels of the-
ories may vary, depending on the system being studied, but the overall
trend described above is generally valid. At each finer scale, a more
detailed theory has to be used, giving rise to more detailed information
on the system.

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

1.5. Multiscale Modeling of complex systems 39

1.5.2 Analytic techniques

Analytic techniques can be used as a classical approach to derive effec-
tive models at the scale of interest. As an example of the application
of such a technique let us consider the averaging method in which the
multiscale nature of the problem can be formulated as a system of or-
dinary differential equations in the action-angle variables by writing it
as follows

ϕt =
1

ε
ω(I) + f(ϕ, I)It = g(ϕ, I)

where ϕ is the fast variable, which varies on the time scale of O(ε),
while ε � 1; I is the slow variable, which mainly varies on the time
scale of O(1) (f and g are assumed to be 2π-periodic in ϕ).

Another example of a mathematical technique for approaching multi-
scale problems is the homogenization method for which we can consider
the problem

∂uε

∂t
= ∇ · (a(x, x

ε
)∇uε(x, t)), x = Ω (1.47)

with the boundary condition uε�∂Ω = 0. In this problem the multiscale
nature comes from the coefficients a(x, xε), which contain two scales:
a scale of O(ε) and a scale of O(1). Not only is (1.47) a nice model
problem for the homogenization technique, it also describes important
physical processes such as heat conduction in a composite material
(for simplicity let us assume that a(x, y) is periodic in y). It can be
shown [42] that for ε � 1, uε(x, t) can be expressed in the form

uε(x, t) = U(x, t) + εu1(x,
x

ε
, t) + ε2u2((x,

x

ε
, t)) + . . . , (1.48)

where U satisfies a homogenized equation

∂U

∂t
= ∇ · (A(x)∇U(x, t)). (1.49)

Here A(x) may be thought of as being the effective coefficient describing
the effective properties of the system on the scale of O(1). Determining
A(x) usually requires solving families of the so called cell problems.

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

40 1. Computer simulations

In the one dimensional case, however, A(x) is simply given by the
harmonic average

A(x) = (

� 1

0

1

a(x, y)
dy)−1. (1.50)

1.5.3 Empirical techniques

Many other mathematical approaches have been developed to study
multiscale problems, including boundary-layer analysis [43], semiclas-
sical methods [44], geometric theory of diffractions [45], stochastic mode
elimination [46], and renormalization group methods [47], [48]. Despite
this progress, purely analytical techniques are still very limited when it
comes to problems of practical interest. As a result, the overwhelming
majority of problems have been approached using empirical techniques
to model the small scales in terms of the macroscale variables using
empirically derived formule. As a matter of fact, a large part of the
progress in physical sciences lies in such empirical modeling. A famil-
iar example is the case of the continuum theory of fluid dynamics. To
derive the system of equations for fluids, we apply Newton’s law to an
arbitrary volume of fluid denoted by Ω:

D

Dt

�

Ω

ρudV = F (Ω) (1.51)

where D
Dt is the material derivative, ρ and u are the density and veloc-

ity fields respectively, and F (Ω) is the total force acting on the volume
of fluid in Ω. The forces consist of body forces such as gravity, which
we neglect for the present argument, due to the long-range interac-
tion of the molecules that make up the fluid, and forces due to the
macroscopic-range interaction between the molecules, such as the Van
der Waals interaction. In the continuum theory, the short-range forces
are represented as a surface integral of the stress tensor τ , which is a
macroscopic idealization of the small scale effects,

F (Ω) =

�

∂Ω

(τ n̂)ds (1.52)

where n̂ is the unit outward normal of Ω. The stress τ can be expressed
as τ = −pI+τd, where p is the pressure, I is the identity tensor, and τd
is the dissipative part of the stress. In order to close the system, we need

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

1.5. Multiscale Modeling of complex systems 41

to express τd in terms of u. In the simplest empirical approximation,
τd is assumed to be a linear function of ∇u. This leads to

τd = µ
∇u+ (∇u)T

2
(1.53)

where µ is called the viscosity of the fluid. Substituting this into New-
ton’s law and adding the incompressibility condition gives rise to the
well known Navier-Stokes equation:

ρ(ut + (u ·∇)u) +∇p = µ∆u ∇ · u = 0 (1.54)

In such a macroscopic description, all molecular details of the liquid are
lumped into a single parameter, the viscosity. Fluids for which Eq. 1.53
gives an accurate description of the small-scale effects are called New-
tonian fluids. This simple derivation illustrates how, in general, con-
tinuum models in the form of partial differential equations are derived.
One typically starts with some universal conservation laws such as Eq.
1.51. This requires introducing certain currents or flux densities, which
are then expressed by some postulated constitutive relationships such
as 1.53. In this way, we obtain the heat equation for thermal conduc-
tion by postulating Fourier’s law, the diffusion equation for mass trans-
port using Fick’s law, and the porous medium equation using Darcy’s
law. Such empirical ad hoc descriptions of the small scales are used
almost everywhere in science and engineering. In molecular dynamics,
empirical potentials are used to model the forces between atoms, medi-
ated by the electrons. In kinetic theory, empirical collision kernels are
used to describe probabilistically the short-range interaction between
the atoms and the molecules. Other examples include plasticity, crack
propagation, and chemical reactions. While much progress has been
made using such empirical approaches, their shortcomings have also
been recognized, especially in recent years, since numerical simulations
based on the empirical models are now accurate enough that the mod-
eling error can be clearly identified. Microscale simulation methods
such as electronic structure calculations have matured, enabling us to
ask more ambitious questions. Moreover, the empirical approach of-
ten lacks information about how microstructural changes (such as the
conformation of polymers in a polymeric fluid) affect the macroscale
properties of the system.

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

42 1. Computer simulations

1.5.4 Examples of Multiscale Problems

In view of the limitations of the empirical approach, several “first
principle”-based multiscale methods have been proposed in recent years.
Some of these traditional and modern computational multiscale tech-
niques are given in Table 1.2.

Table 1.2: Traditional and modern computational multiscale techniques.
Traditional multiscale techniques focus on resolving the fine-scale problem.
Modern multiscale techniques try to reduce the computational complexity
by using special features in the fine-scale problem, such as scale separation.

Traditional Techniques Recent Techniques

Multigrid Method Car-Parrinello Method
Domain Decomposition Quasi-Continuum Method
Multiresolution Methods Superparametrization
Adaptive Mesh Refinement Heterogeneous Multiscale Method
Fast Multipole Method Vanden-Eijnden’s Method
Conjugate Gradient Method Coarse-Grained Monte Carlo Models

Adaptive Model Refinement
Patch Dynamics

Quasicontinuum Method

In the continuum theory of nonlinear elasticity, we are often interested
in finding the displacement field by solving a variational problem

min
u

E(u) =

�

Ω

f(∇u)dx (1.55)

where E is the total elastic energy, u is the displacement field, and f
is the stored energy functional, subject to certain loading or bound-
ary conditions. This approach takes for granted that the function f is
explicitly given. Actually the process of finding f is rather empirical
and often even crude. A different methodology called the quasicontin-
uum method has been proposed in Refs. [49] and [50] for the analysis
of crystalline materials. In this case the microscopic model comprises
molecular mechanics of the atoms that make up the crystal. Given
a macroscopic triangulation of the material, let VH be the standard
continuous piecewise-linear finite-element space over this triangulation.

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

1.5. Multiscale Modeling of complex systems 43

For U ∈ VH , ∇U is constant on each element K. Let EK(U) be the
energy of a unit cell in an infinite volume uniformly deformed according
to the constant deformation gradient ∇U |K . In the quasicontinuum
approximation, the total energy associated with the trial function U is
then given by

Ẽ(U)
�

K

nKEK(U) (1.56)

where nK is the number of unit cells in the element K. This approach
bypasses the necessity of modeling f empirically. Instead, the effective
f is computed on the fly using microscopic models. What we have
described is the simplest version of the quasicontinuum method. There
are many improvements, in particular to deal with defects in the crystal
[50].

Kinetic-Hydrodynamic Models of Complex Fluids

Consider, for example, polymers in a solvent. The basic equations
follow again from that of mass and momentum conservation:

ρ(ut + (u ·∇)u) +∇p = µs∆u+∇ · τp ∇ · u = 0 (1.57)

Here we have decomposed the total stress into two parts: one part, τp,
due to the polymer and the other part due to the solvent, for which we
used Newtonian approximation; µs is the solvent viscosity. Tradition-
ally, τp is modeled empirically using constitutive relations. The most
common models are a generalized Newtonian model and various vis-
coelastic models. It is generally acknowledged that it is an extremely
difficult task to construct such empirical models in order to describe the
flow under all experimental conditions. An alternative approach was
proposed in the classical work of Kramers, Kuhn, Rouse et al. [51]. In-
stead of using empirical constitutive relationships, this approach makes
use of a simplified kinetic description for the conformation of the poly-
mers. In the simplest situation, the polymers are assumed to be dumb-
bells, each of which consists of two beads connected by a spring. Its
conformation is therefore described by that of the spring. The dumb-
bells are convected and stretched by the fluid, and at the same time
they experience spring and Brownian forces:

γ(Qt + (u ·∇)Q− (∇u)TQ) = F (Q) +
�
kBTγẆ (t) (1.58)

Here Q denotes the conformation of the dumbbell, F (Q) is the spring
force, γ is the friction coefficient, Ẇ (t) is temporal white noise, kB is

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

44 1. Computer simulations

the Boltzmann constant, T is the temperature, and I is the identity
tensor. If we have Q, we can compute the polymer stress τp via

τp = nkBTI + E(F (Q)
�

Q), (1.59)

where n is the polymer density and E denotes expectation over the
Brownian forces. These equations are valid in the dilute regime when
direct interaction between polymers can be neglected. The dumbbell
model is a very simplified one and in many cases needs to be improved.
This can be done in a number of ways (see Ref [51]). Many other mul-
tiscale methods which are similar to those mentioned above have been
developed in the past few years. We mention in particular the work
of Abraham et al. on coupling finite element continuum analysis with
molecular dynamics and tight binding [52], the work on coupling kinetic
equations with hydrodynamic equations, Vanden-Eijnden’s method for
solving stochastic ordinary differential equations with multiple time
scales [53], superparametrization techniques in meteorology in which
the parameters for turbulent transport are determined dynamically by
local microscale simulations, and the work of Kevrekidis et al. on bifur-
cation analysis based on microscopic models [54]. By explicitly taking
advantage of the separation of scales, these methods become much more
efficient than solving the full fine-scale problem. This is a common fea-
ture of the new class of multiscale methods we are interested in. In
contrast, traditional multiscale techniques such as the original multi-
grid methods are rather blind to the special features of the problem,
since they are aimed at solving the full fine-scale problem everywhere
in the macroscale domain. Of course many practical problems such as
turbulent flows do not have separation of scales. For these problems,
other special features, such as selfsimilarity in scales, must be identi-
fied first before we have a way of modeling them more efficiently than
simply solving the fine-scale problem by brute force or resorting to ad
hoc models.

Molecular Dynamics

Usual MD approaches to the evaluation of the properties of large molec-
ular systems are based on the integration of classical mechanics equa-
tions.

This makes Molecular Dynamics a deterministic technique: given an
initial set of positions and velocities, the subsequent time evolution

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

1.5. Multiscale Modeling of complex systems 45

is in principle1 completely determined. The computer calculates a
trajectory of the system in a 6N -dimensional phase space (3N positions
and 3N momenta).

However, the classical mechanics approach of MD has intrinsic limits
which can be singled out in a simple way by defining the de Broglie
thermal wavelength [55]:

Λ =

�
2π�

MκBT
(1.60)

whereM is the mass of the system. The classical approximation is valid
when Λ � a, where a is the average interparticle distance. For a gas
this quantity is approximately (V/N)1/2 where V is the volume and N
is the number of particles. When the thermal de Broglie wavelength is
much smaller than the interparticle distance, the gas can be considered
to be a classical or Maxwell-Boltzmann gas. On the other hand, when
the thermal de Broglie wavelength is of the order of (or larger than)
the interparticle distance, quantum effects will dominate and the gas
must be treated as a Fermi gas or a Bose gas, depending on the nature
of the gas particles. The critical temperature is the transition point
between these two regimes. At the critical temperature, the thermal
wavelength is approximately equal to the interparticle distance. That
is, the quantum nature of the gas will become evident for:

V

NΛ3
≤ 1 (1.61)

and in this case the gas will obey Bose-Einstein statistics or Fermi-
Dirac statistics, whichever is appropriate. On the other hand, for

V

NΛ3
� 1 (1.62)

the gas will obey Maxwell-Boltzmann statistics. The classical approxi-
mation is poor for light systems and when T is sufficiently low. Molec-
ular dynamics results should be interpreted with caution in these re-
gions. There are however other intrinsic limits in molecular dynamics
simulations. In fact in MD atoms interact with each other and these
interactions originate forces which act upon atoms, and atoms move un-
der the action of these instantaneous forces. As the atoms move, their

1in practice, the finiteness of the integration time step and of the electronic represen-
tation of numbers (in other words the arithmetic rounding) might cause the computed
trajectory deviate from the true one.

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

46 1. Computer simulations

relative positions change and forces change as well. Forces are usually
obtained as gradient of the potential energy function and especially de-
pend on the particle positions. The accuracy of the simulation therefore
is very sensitive to the suitability of the potential chosen to describe
the interaction of the components of the system. MD simulations are
performed on systems typically containing thousands, millions or even
billions of atom. Simulation times on their side can range, under ap-
propriate conditions, from picoseconds to microseconds. A simulation
is “safe” with respect to its minimum duration when duration in time
is much longer than the relaxation time of the quantities of interest.
However, different properties may have different relaxation times. In
particular, systems tend to become slow and sluggish in the proximity
of phase transitions, and it is not uncommon to find cases where the
relaxation time of a physical property is orders of magnitude larger
than times achievable by computer simulations. On the contrary, there
is a problem of “safety” also with respect to its maximum duration.
In fact, the error accumulation at each time step may sum up to an
amount comparable with the integration variables when the number of
steps is exceedingly large. The size of the system can also constitute a
problem. For example in the case in which one has to compare the size
of the MD cell with the correlation lengths of the spatial correlation
functions of interest there may be problems when the size of the cell is
too small. Correlation lengths, in fact, may increase or even diverge in
proximity of phase transitions. Therefore, the result may become no
longer reliable when the correlation length becomes comparable with
the box length. This problem can be partially alleviated by a method
known as finite size scaling. This consist of computing a physical prop-
erty A using several boxes having different sizes L, and then fitting the
results using the relationship:

A(L) = A◦ +
c

Ln
(1.63)

with A◦, c and n being the best fit parameters. A◦ then corresponds to
limL→∞ A(L), and should therefore be taken as the best estimate for
the physical quantity. Despite the above discussed limitations most of
the observable can be satisfactorily evaluated in multiscale treatments
[56, 57].

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

Chapter 2

Concurrent computing

2.1 Introduction

The European Union has since long promoted the assemblage of a clus-
ter of large scale supercomputer platforms in order to tackle the solu-
tion of the mentioned Grand Challenges in computational sciences. At
present, however, the evolution of networking and computer technolo-
gies allows to go beyond the policy of individual large computer centers
machines in favour of clusters of out-of-the-shelf PCs. Moreover at the
same time Computational applications are increasingly becoming an
assemblage of different packages needing the converged effort of differ-
ent expertises and multiscale modeling. This leverages on the present
effort at creating worldwide Grid platforms and fostering the develop-
ment and implementation on the Grid of ICT applications in all fields
of human activities.

For applications concerning the lowest level usage of the Grid platform
(data transfer) a broad bandwidth, a safe and secure transfer proto-
col and an authenticated access are needed. A distributed usage of
the information on the Grid dramatically requires new services mainly
consisting of intelligent tools for information representation and han-
dling. Moreover, the shared and distributed usage of knowledge is, in
absolute, one of the most complex tasks. In fact, it implies the coor-
dination of the expertise, the cross fertilization of the know how, the
protection of the intellectual property and the stimulation of teamed
innovative research. Additional specific difficulties arise when this has
to be designed and implemented on a highly distributed and hetero-
geneous context and the subject to deal with is the interpretation of

47

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

48 2. Concurrent computing

transformations in matter. In this context, the Grand Challenge is the
realistic a priori simulation of the multiscale type, starting from the
microscopic level of the molecular interaction and, therefore, ranging
from molecular to human level. Inevitably such simulation is necessar-
ily founded on competences and skills scattered worldwide as typical
of Grids.

In this chapter, the evolution of computer technologies and platforms
towards distributed computing and its impact on the way a Grid em-
powered Molecular Simulator for materials science applications has
been built, is described.

2.2 Concurrency on a single processor

The single-processor architectures are based on the well known Von
Neumann model, sketched in Fig. 2.1. In this model the processing
unit first fetches an instruction from the memory that subsequently is
interpreted and executed after the fetching of the operands involved.
Therefore, in a single-cycle the CPU performs the following operations:

- Fetch the next instruction : the next instruction referenced by
the program counter is transferred from memory to CPU;

- Decode : the fetched instruction is interpreted and related cir-
cuitry activated;

- Fetch the operands : the referenced operands are transferred
from memory and stored in the registers;

- Execute : the decoded instruction is executed;

- Check for interrupt : the processor checks for signal of interrupt
issued by the operating system or any other process and decides
accordingly to stop or to solve the interrupt and continue;

- Store the results : the results are transferred to the appropriate
memory locations;

- Increment the counter the counter is updated to allow the
fetch of the next iteration.

The Von Neumann architecture has represented the first step in the pro-
cess of building an efficient automatic handling of information. Year by
year, the original architecture has been modified to increase its speed

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

2.2. Concurrency on a single processor 49

Figure 2.1: The Von Neumann model.

and improve its efficiency. The progress towards faster computers has
been largely based, in the past, on technology advances in producing
increasingly more integrated circuitry. This has made the CPU more ef-
ficient, the memories more capable, the buses more transfer-performing.

The ability of further integrating an increasing number of circuitry
elements on a chip has led to a silicon design integrating into the same
processor socket multiple execution cores (multicore processors).

Despite the fact that the multi-core processor plugs multiple “execu-
tion cores” directly into a single processor socket, the operating system
perceives each of them as a discrete logical processor with all the asso-
ciated execution resources. The idea behind this implementation is the
strategy of divide et impera. This means that by dividing the compu-
tational work traditionally performed by the single processor’s core in
traditional processors and spreading it over multiple execution cores, a
multi-core processor can perform more work within a given clock cy-
cle. To enable this improvement, the software running on the platform
must be written in a way suited to spread the workload across multiple
execution cores. This functionality is called thread-level parallelism or
“threading”. Applications and operating systems that are written to
support threading are referred to as ”threaded“ or “multi-threaded”.
A processor equipped with thread-level parallelism can execute com-

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

50 2. Concurrent computing

pletely separate threads of code. This can mean one thread running
from an application and a second thread running from an operating
system, or parallel threads running from within a single application.

Circuital improvements have fuelled a constant advance in computing
speed that has been quantified in the past by the Moore law: “the
computing speed doubles every two years”. A graphical illustration of
the Moore law is given in Fig. 2.2 where the CPU transistor counts are
plotted against dates of introduction suggesting that the exponential
growth with transistor count doubling every two years.

However, due to the intrinsic limit of this process (a signal cannot be
faster than light speed in the related medium), progress has involved
other key aspects of the computer and has prompted innovative research
in several relevant fields, including optical circuitry, molecular devices,
quantum computers, etc.

Figure 2.2: A graphical representation of the Moore’s law.

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

2.2. Concurrency on a single processor 51

2.2.1 Management concurrency

The first move towards data transfer concurrency is already built into
the Von Neumann architecture that makes use of buses for parallel bit
transfers. The concept of concurrent executing was also already pro-
posed by Babbage and by Von Neumann for dealing with the various
grid points of the differential archiectures. Another example of ante
litteram parallelism is the first vacuum tube computer (ENIAC [58])
that was made of 25 independent computing units. However, most of
the early days progress was obtained at management level. The con-
cepts themselves of typing ahead, multiprogramming and time sharing
did build up software and hardware concurrency in sequential (single
CPUs) computers. Along the same line moved the use of dedicated
(low level) CPUs for dealing, for example, with I/O internal communi-
cations.

The real progress, however, was reached by making in a single machine
the circuitry extensively concurrent in several ways including CPU du-
plication, processing units segmentation, memory partitioning and very
recently, as already mentioned, multi-core architecture. Such single
machine concurrency is more frequently referred to as “parallelism”.

2.2.2 Instruction level parallelism

When the parallelism is exploited at instruction level (Instruction Level
Parallelism, ILP) the concurrent execution of a multiple flux of in-
structions is adopted in order to maximize the performance. This is
obtained by making use of the pipelining as illustrated in Fig. 2.3. In a
pipelined architecture the CPU is usually partitioned up into stages for
each operation (including instruction decoding, arithmetic, and regis-
ter fetching) with each stage processing one instruction at a time. In
the case illustrated in Fig. 2.3 the following nomenclature is adopted:

- IF = Instruction Fetch

- ID = Instruction Decode

- EX = Execute

- MEM = Memory access

- WB = Register write back

In some cases such a multiple flux can be sorted out (by the compiler
as well as by the hardware) on the basis of a partial sorting induced by

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

52 2. Concurrent computing

the logical dependencies of instructions, depending on the semantic of
the program. The ILP paradigm was born in the seventies (together
with superscalar architectures) by adopting a fine grain parallelism and
evolving later in multiscalar and Very Long Instruction Word (VLIW)
architectures.

Figure 2.3: A graphical representation of the pipeline in a microprocessor.

Superscalar Architectures

In ILP architectures, even if instructions are pipelined, in each stage
of the pipeline only one instruction can be executed. In superscalar
architectures (see Fig. 2.4) the machine-cycle phases are concurrently
executed by simultaneously dispatching multiple instructions to redun-
dant functional units on the processor. Each functional unit is not a
separate CPU core but an execution resource within a single CPU such
as an arithmetic logic unit, a bit shifter, or a multiplier. The super-
scalar architecture is traditionally associated with several identifying
characteristics applied within a given CPU core. Accordingly its main
features are:

- Instructions are issued from a sequential instruction stream

- CPU hardware dynamically checks for data dependencies between
instructions at run time (versus software checking at compile time)

- Multiple instructions per clock cycle are accepted.

All executing functional units, due to the fact that each of them is
implemented to perform a well established class of machine operations,
are totally dedicated. The involved operations include floating/fixed-
point operations as well as load/store operations (the last class involves
data movements from/to the main memory). The degree of parallelism
of these architectures is confined between three and six; processors

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

2.2. Concurrency on a single processor 53

belonging to this class are, for example, the MIPS 15000, DEC 21164,
IBM Power4, ULtra Sparc III.

Figure 2.4: Superscalar architecture with double pipeline.

Multiscalar architectures

The most recent ILP paradigm is the Multiscalar [59]. In Multiscalar
ILP architectures the granularity of the parallelism, exploited at in-
struction level, is greater than that of superscalar architectures. In
these architectures the program loaded in the main memory is par-
titioned into many independent (in terms of logic) tasks which are
distributed to the functional units, where the cycle-machine phases are
applied to the instructions of the assigned task.

VLIW architectures

The VLIW (Very Long Instruction Word) architecture (see Fig 2.5)
takes advantage of the capability of the compiler to compact indepen-
dent operations in a larger single instruction word and to execute it
on different functional units (after segmentation). The VLIW proces-
sor executes operation in parallel based on a fixed schedule determined
when programs are compiled. Since determining the order of execution
of operations (including which operations can execute simultaneously)
is handled by the compiler, this means that the processor does not need
scheduling hardware. As a result, VLIW CPUs offer significant com-
putational power with less hardware complexity (but greater compiler

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

54 2. Concurrent computing

complexity) than is associated with most superscalar CPUs. Thus, it
requires the adoption of refined compilers able to implement advanced
techniques, such as Software pipelining and trace scheduling [60].

Figure 2.5: VLIW architecture.

2.2.3 Data Level Parallelism

The parallelism exploited at data level (data level parallelism, DLP)
differs from the ILP in the granularity of the operands involved in the
operations. Arithmetic operations are executed on data item arrays:
in this way the paradigm becomes useful when one has to deal with
applications involving a large number of vector and matrix elements
operations.

Vector processors

Vector computers have been the first data parallel high performance
computing systems. It has also been proposed to add a vector func-
tional unit [61] to a superscalar processor. In a vector machine the

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

2.2. Concurrency on a single processor 55

flux of instructions passes through the Scalar Control Unit that takes
care of submitting the instruction, if of the vector type, to the Vector
Control Unit. Such an instruction is executed by a functional pipeline.
In Fig.2.6 a register-register vector architecture is sketched. The vector
operands as well as the vector results are stored in vector registers hav-
ing a fixed (as in the CRAY computers) or dynamic (as in the Fujitsu
VP200 Series) length [62]. The memory-memory vector architecture
(adopted by the CDC CYBER 205) differs from the previous one since
a streaming vector unit is used instead of the vector registers, in order
to avoid memory-register traffic. However, such a model has not been
successful since the memory access is very time consuming, even if it
is useful when dealing with large arrays. In fact, in these processors
the special vector registers can store up to N array values at the same
time and each operation performed on a single register is propagated
to the whole set of values stored on it. Obviously, in order to speed up
this mechanism, the availability of a fast link with the main memory is
crucial.

Figure 2.6: Vector architecture.

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

56 2. Concurrent computing

Array processors

An array processor performs only vector instructions, in fact the array
processor architecture exploits the approach of executing concurrently
the same instruction on several data. This approach guarantees high
performances for programs involving a great number of vector instruc-
tions. An example of vectorial machine is represented by a vector co-
processor (recently even PlayStation� and video cards are used) linked
to an host-computer that loads in the main memory of the vector com-
puter the program, together with the relevant data for the computation.
The Instruction Unit (IU) fetches and decodes the instructions to be
executed from the main memory and sends them to the Execution Units
(EUs) (only if they involve arrays). The IU loads also into the Data
Memories (DM) the operands involved in the array operations. Each
EU-DM pair represents a Processing Element (PE). Such a model is
sketched in Fig.2.7 and uses a distributed memory organization. As an
alternative, we have the shared memory organization that is illustrated
in Fig.2.8 which differs from the distributed memory organization be-
cause it can be simultaneously accessed by different EU with an intent
to provide communication among them or avoid redundant copies.

Systolic array

A systolic array is a pipe network arrangement of processing units called
cells. It is a specialized form of parallel computing, where cells (i.e.
processors), compute data and store it independently of each other.
A systolic array is composed of matrix-like rows of Data Drocessing
Units (DPU) called cell which are similar to Central Processing Units
(except for a program counter, since operation is transport-triggered,
i.e., by the arrival of a data object). Each cell shares the information
with its neighbours immediately after processing. The systolic array is
often rectangular where data flows across the array between neighbour
DPUs, often with different data flowing in different directions. The
data streams entering and leaving the ports of the array are generated
by Auto-Sequencing Memory units (ASM). ASM is an essential part of
the anti machine paradigm. It is part of the instruction sequencer and
is co-located with the datapath.

An example of a systolic algorithm might be designed for matrix mul-
tiplication. One matrix is fed in a row at a time from the top of the
array and is passed down the array, the other matrix is fed in a column

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

2.2. Concurrency on a single processor 57

Figure 2.7: Array processor architecture with distributed memory.

at a time from the left hand side of the array and passes from left to
right. Dummy values are then passed in until each processor has seen
one whole row and one whole column. At this point, the result of the
multiplication is stored in the array and can now be output a row or a
column at a time, flowing down or across the array.

2.2.4 Limits of the sequential architectures

Scalar architectures described in the previous sections are hitting the
limit of their performances and most of the modern scientific advances
could never be met using sequential computers (as an example, the
simulation of a climatic model for a period of ten years, needs the ex-
ecution of 1016 floating point operations, that needs, if performed on a
superscalar architecture, about three years). In fact, in addition to the
execution speed, that can be increased using the just mentioned man-

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

58 2. Concurrent computing

Figure 2.8: Array processor architecture with distributed memory.

agement concurrency that includes ILP and DLP, there is a physical
limit in directly connecting the single CPU to a sufficiently large mem-
ory. Let us consider the case of a scalar computer that has to execute
in one second the following cycle (Teraflops speed):

Do i= 1 to 1000000000000
a(i)=b(i)+c(i)

EndDo

we need to transfer 3 · 1012 variables from the memory to the CPU
registers in one second. This implies that, if r is the mean distance of
a word of memory from the CPU, the overall distance to be covered
while transferring 3 · 1012 variables in one second is 3 · 1012 · r. Since
the speed of light is 3 · 108 m/s one gets r = 10−4 m. If we have
3 · 1012 memory cells (each containing a word) packed as a matrix on
a board around the CPU, then we have about 106 cells per row. This
means that each cell cannot have a size larger than 10−6 · r or 10−10

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

2.3. Concurrency on multiple processor 59

m that is the mean dimension of an atom. Therefore, since we are
not able to store a 32/64 bit number into a location of the size of an
atom we cannot build a scalar computer with a peak performance of 1
Tflops . This leads to the conclusion that, in order to increase hardware
performances we need to build platforms having many processors each
surrounded by a local memory.

2.3 Concurrency on multiple processor

As we have already mentioned parallelism can be achieved in several
ways by exploiting different architectural features. To this end, it is
very useful to introduce a classification (taxonomy) that labels various
architectures by the nature of the adopted parallelism.

2.3.1 Flynn taxonomy

Starting from the von Neumann machine model, that consists of one
processor which executes sequentially a set of instructions to produce
a single result, a classification can be based on the concept of streams.
Two are the basic streams of a computer: instructions stream and data
stream. This represents the basis of the taxonomy proposed by Michael
J. Flynn in the sixties that reads as follows:

“The multiplicity is taken as the maximum possible number
of simultaneous operations (instructions) or operands (data)
being in the same phase of execution at the most constrained
component of the organization” M.J. FLYNN, 1966 [63]

Following these considerations, the taxonomy introduced by Flynn is
articulated as follows:

• SISD Single Instruction stream Single Data stream

• SIMD Single Instruction stream Multiple Data stream

• MISD Multiple Instruction stream Single Data stream

• MIMD Multiple Instruction stream Multiple Data stream

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

60 2. Concurrent computing

SISD

The SISD class of architectures (see Fig.2.9) is the simplest one. In fact,
it consists of a sequential machine which computes only one instruction
on a single data item. In other words, the SISD family consists only of
von Neumann computers. This definition however, does not consider
any parallel organization of CPUs, such as the integration of multiple
elaboration units on the same chip that, as we have already seen, is a
popular practical solution.

Figure 2.9: Sketch of SISD (Single Instruction, Single Data) machine.

SIMD

SIMD systems (see Fig.2.10) have a single control unit that executes
one operation at time. They consist of several homogeneous process-
ing units which can execute simultaneously that operation on different
data sets. The central unit (control unit), in fact, acts like an emitter
broadcasting the current instruction to be executed to the Processing
Elements (PEs). Cray 1, NEC SX-2, Fujitsu VPxx and APE (or
QUADRIX) are some examples of SIMD architectures. SIMD archi-
tectures can also be split in two classes:

- vector SIMD

- parallel SIMD

MISD

In the MISD case (see Fig.2.11) many instructions act simultaneously
on the same data item. In this case, the granularity is represented by
the processes (by the multiple instruction orograms). This architectural
model has never been popular due to its complexity as well as its futility.

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

2.3. Concurrency on multiple processor 61

Figure 2.10: Sketch of SIMD (Single Instruction, Multiple Data) machine.

Figure 2.11: Sketch of MISD (Multiple Instruction, Single Data) machine.

MIMD

In MIMD machines (see Fig.2.12) the parallelism is exploited at a very
coarse grain level on the execution tasks. This means that many PEs in-
terpret different instructions on different data sets. Moreover, MIMD
computers which make use of distributed memory are often referred
to as thightly coupled machines (multiprocessors) while in case of a
shared use of memory they are called loosely coupled machines (multi-
computers). This class represents the multiprocessor version of SIMD
architectures. Examples of computers belonging to MIMD multipro-
cessors class are ENCORE, MULTIMAX, SEQUENT & BALANCE;
examples of computers belonging to MIMD multicomputers class are

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

62 2. Concurrent computing

INTEL iPSC and NCUBE/7.

Figure 2.12: Sketch of MIMD (Multiple Instruction, Multiple Data) machine.

Figure 2.13: A summary sketch about computing architectures.

2.3.2 Other taxonomies

Since 2006, all the top 10 and most of the TOP500 supercomputers are
based on a MIMD architecture.

Some further divide the MIMD category into the following categories:

Single Program, Multiple Data (SPMD) Multiple autonomous pro-
cessors simultaneously executing the same program (but at inde-
pendent points, rather than in the lockstep that SIMD imposes) on

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

2.3. Concurrency on multiple processor 63

different data. Also referred to as Single Process, Multiple Data,
the use of this terminology for SPMD is erroneous and should be
avoided, as SPMD is a parallel execution model and assumes mul-
tiple cooperating processes executing a program. SPMD is the
most common style of parallel programming.

Multiple Program Multiple Data (MPMD) Multiple autonomous
processors simultaneously operating at least 2 independent pro-
grams. Typically such systems pick one node to be the host (the
explicit host/node programming model) or manager (the Man-
ager/Worker strategy), which runs one program that farms out
data to all the other nodes which all run a second program. Those
other nodes then return their results directly to the manager. An
example of this would be the Sony PlayStation 3� game console,
with its SPE/PPE processor architecture.

Cell Cell microprocessor architecture (jointly developed by Sony, Sony
Computer Entertainment, Toshiba, and IBM, an alliance known
as STI) is a multi-core chip composed of one Power Processor
Element (PPE) (sometimes called Processing Element, or PE),
and multiple Synergistic Processing Elements (SPE) [64]. The
PPE and SPEs are linked together by an internal high speed bus
dubbed Element Interconnect Bus (EIB). Due to the nature of
its applications, Cell is optimized towards single precision floating
point computation. The SPEs are capable of performing double
precision calculations, albeit with an order of magnitude perfor-
mance penalty. Waiting for new chips to boost SPE double pre-
cision performance, a way to circumvent this is to use iterative
refinement as software level, which means values are calculated in
double precision only when necessary.

2.3.3 Memory architectures

As already mentioned above, Flynn’s taxonomy is poor in classifying
present parallel machines even if it is a very popular scheme. As already
pointed out, the organization of the main memory is a key element in
defining and classifying parallel architectures. By taking into account
the memory structure of the machine (that is the organization of the
main memory) three different models can be considered:

1. Distributed memory

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

64 2. Concurrent computing

2. Shared memory

3. Virtual Shared memory

This is particularly important for MIMD systems which exploit paral-
lelism at coarse grain level. The organization of the memory can be, at
an abstract level, either distributed or shared. The distributed memory
model is illustrated in Fig. 2.14.

This model is referred in the literature as NORMA (NO Remote Mem-
ory Access). In this case the memory is distributed among the PEs,
which are called computational (elaboration) nodes, each of which can
be a multiprocessor. If all nodes are single processor machines, each
node is made of a CPU that refers to its own memory. This means that
a node can only access the memory directly attached to it. The com-
munication between different nodes is managed by a message-passing
interface, thanks to the interconnection network. In this case, how-
ever, the user has to implement the needed communication patterns,
at the programming level. NORMA systems are generally made of
many CPUs neither very powerful nor expensive.

An example of the distributed memory machine model of the NORMA
type is the IBM SP5 hosted at CINECA [65] in the early 2000 whose
model with 64 nodes p5-575 interconnected with a pair of connections to
the Federation HPS (High Performance Switch). Globally such machine
had 512 IBM Power5 processors, capable of 4 double precision floating
point operations per clock cycle, and 1.2 TBs of memory. The peak
performance of SP5 is 3.89 TFlops. A p5-575 node contains 8 SMP
processors Power5 at 1.9GHz. 60 nodes have 16GBs of memory each, 4
nodes have 64GBs each. The IBM-SP5 runs AIX 5.3 Operating System.

Quite different is the shared memory model. In this case the PEs coor-
dinate their activity, accessing to data sets and instructions, in a global,
shared memory environment. All processing elements have direct access
to the whole memory space via the interconnection structure. More-
over, nodes can be dedicated or not. In this respect, it is useful to single
out two categories: UMA (Uniform Memory Access) and NUMA (Non
Uniform Memory Access). In the UMA scheme (see Fig. 2.15) the
processors (P in the figure) work in an anonymous modality. Each
process in a ready state (i.e. ready to be executed) is scheduled on the
first available PE and the access time to the main memory (M in the
figure) is the same for all PEs. On the contrary, in the NUMA scheme
(see Fig. 2.16) the PEs work in a dedicated modality. Accordingly,
each node gets an allocated partition of the global machine resources.

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

2.3. Concurrency on multiple processor 65

In particular, while the UMA model is closer to the shared memory
scheme than the NUMA one, the NUMA model is made of subsets of
processors with each subset having a local memory (LM in the fig-
ure) and I/O devices. The processors communicate among themselves
via an interconnection structure which realizes a shared address space
among the memory units. In other words, all the local memories share
a global address space, accessible to the whole set of PEs (in other
words, each PE can access, via remote operation, the local memory of
the remaining PEs). Accordingly, local memory access time is shorter
than in remote memory access. In the NUMA model the character-
istics of both the simple shared memory and the distributed memory
schemes coexist. This allows the NUMA model to go beyond the poor
scalability of the UMA scheme when the number of processors and/or
of the memory units (M) increases. In fact, when in a NUMA model
the number of processors attempting to access the memory increases,
the latency of the memory gets larger leading to progressively more se-
vere bottlenecks. This problem is partially circumvented in the NUMA
model by using the local memory of the processor (LM).

The last model of this family is the virtual shared memory (VSM)
architecture. The VSM architecture has a memory organization similar
to both the distributed and to the shared ones. In fact, each node
refers to a MMU (Memory Management Unit) linked with both the
local memory and an interconnection structure implementing the global
address space. The MMU decides if a referred object has to be fetched
from the local memory or from the remote one, once the processor
address is known. The remote access is made possible by a support
circuitry handling the communication, independently from the address
of the processor. Sometimes these architectures are implemented as all
cache machines. Such a model, in particular, is a special case of the
NUMA in which local memories have been converted into caches. This
model is also referred to as COMA (Cache-Only Memory Architecture).

2.3.4 The Interconnection infrastructure

The main difference between different MIMD architectures is concerned
with the modality of data exchange. In fact, a MIMD system can be
implemented in a variety of ways, depending on the adopted inter-
connection network, that represents a key point with respect to the
performance in data exchange processes. Obviously, the choise of the

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

66 2. Concurrent computing

Figure 2.14: Distributed memory model.

Figure 2.15: UMA model.

Message Passing paradigm to be used for data, information and signal
exchange is also very important.

The main topologies of interconnection networks can be grouped as
follows:

Full connection : this topology represents the most powerful inter-
connection system since each node is directly connected to the
others. If we have N processors, each node has N − 1 connections
giving an overall total number of connections equal to N(N−1)/2.
Obviously, despite the great advantage of having all the nodes si-
multaneously connected (the bandwidth is proportional to N2),
this model becomes impractical if N is large.

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

2.3. Concurrency on multiple processor 67

Figure 2.16: NUMA model.

Single shared bus : this type of network topology in which all of
the nodes of the network are connected to a common transmission
medium which has exactly two endpoints (this is the “bus”, which
is also commonly referred to as the backbone, or trunk). All data
that is transmitted between nodes in the network is transmitted
over this common transmission medium and is able to be received
by all nodes in the network virtually simultaneously.

Figure 2.17: Full connection.

k-dimensional Grid (Mesh) : in such a network nodes are collo-
cated on a grid of dimension k and width w, thus we have a total
amount of nodes equal to wk (see Fig. 2.19). Communications
are performed only with neighbours (each node is interconnected
to 2k nodes). Some versions of this topology present wrap-around
connections between the border nodes (toroidal topology).

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

68 2. Concurrent computing

Figure 2.18: Bus.

Figure 2.19: Mesh.

Tree and pyramid : a pyramidal network of dimension p is a com-
plete quaternary tree with log4 P levels, where the nodes of each
level are connected by making use of a 2−D mesh (see Fig. 2.20).

Figure 2.20: Tree.

Ring : it consists of a one dimensional array in which the final nodes
are directly connected between them. In two dimension this is a
thorus.

Figure 2.21: Ring.

Butterfly : a butterfly network has (k+1)2k nodes distributed among
(k + 1) rows (ranks), each consisting of 2k interconnected nodes.

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

2.3. Concurrency on multiple processor 69

Figure 2.22: Butterfly.

Hypercube (Binary n-Cube) : such a topology consists of 2k nodes
arranged as an Hypercube of dimension k (see Fig. 2.23). The
nodes are numbered from 0 to 2k−1 and two nodes are connected
only if their binary representations differ only for one bit.

Star : the type of network topology in which each of the nodes of the
network is connected to a central node with a point-to-point link in
a “hub” and “spoke” fashion, the central node being the “hub” and
the nodes that are attached to the central node being the “spokes”
(e.g., a collection of point-to-point links from the peripheral nodes
that converge at a central node). All data that is transmitted
between nodes in the network is transmitted to this central node,
which is usually some type of device that then retransmits the
data to some or all of the other nodes in the network, although the
central node may also be a simple common connection point (such
as a “punch-down” block) without any active device to repeat the
signals.

Figure 2.23: Hypercube.

Cross-bar switch : a crossbar switch is a switch topology where ev-
ery node can be connected to any other node in the system. This
topology has traditionally been used for high-performance com-
puting systems since it can provide concurrent independent data
paths between pairs of nodes in the system for maximum total sys-
tem bandwidth. This topology is also flexible because the connec-

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

70 2. Concurrent computing

Figure 2.24: Star.

tions between node pairs can be changed dynamically as needed
for optimum system communication.

Network of computers : this is the case of a single communication
channel shared by all nodes of the system. Each node can be ei-
ther a workstation or a PC (or both if we are not interested into
having homogeneity) and the interconnection network is, typically,
a LAN. Although as an individual platform this model is rather
poorly performing, it is the reference scheme for Grid computing.
In the case of Grid computing each computing apparatus is con-
sidered as a working unit and the public network must provide
access for work coordination.

Clusters : this is a particular cost effective platform representing the
most popular trend in concurrent computing. Clusters are essen-
tially farms i.e., a set of independent servers each connected to
a central unit, called front end, that is directly interfaced with
the outer network. The nodes are normally PC like units having
good memory sizes and equipped with low cost hard disks. The
interconnection network consists of a switch, typically of Giga-
bit technology. This solution makes it feasible to build a parallel
system in a simple and cheap way.

2.4 Concurrent computing

Along with the evaluation of computer architectures and platforms,
program design and organization models are needed to provide users
with suitable tools to implement concurrency in their applications.

The basic sequential machine programming paradigm is the execution
of a set of instructions. An instruction can specify, in addition to var-
ious arithmetic operations, the address of data to be read or written
in memory and/or the address of the next instruction to be executed.

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

2.4. Concurrent computing 71

While it is possible, in principle, to program a computer using this basic
scheme directly in machine language, this is for most purposes imprac-
tical since one needs to keep track of millions of memory locations and
manage the execution of thousands of machine instructions. Hence,
modular design techniques are applied, whereby complex programs are
constructed from simple components, and components are structured
in terms of higher level abstractions such as data structures, iterative
loops, alternative sequences and procedures. Abstractions (like the
procedures) make the exploitation of modularity easier by allowing ob-
jects to be manipulated without concern for their internal structure. So
do high-level languages such as Fortran, Pascal, C, C++. These high
level (artificial) languages allow program design expressed in terms of
abstractions to be translated automatically into executable code.

On the other hand, parallel programming introduces additional sources
of complexity with respect to sequential programming if we were to
program at the lowest level. In this case, in fact, not only would the
number of instructions to be executed increase, but the execution of
thousands of processes and the coordination of millions of interpro-
cess interactions would also need to be managed explicitly. Hence,
abstraction and modularity are at least as important as in sequential
programming. In order to develop a parallel application one has to
look at well established programming paradigms. Three are the main
paradigms in parallel computing:

Message passing: this is probably the most widely used parallel pro-
gramming paradigm today. Message-passing applications create
multiple tasks, with each task encapsulating local data. Each
task is identified by a unique name, and tasks interact by sending
and receiving messages to and from named tasks. The message-
passing paradigm does not preclude the dynamic creation of tasks,
the execution of multiple tasks per processor, or the execution of
different programs by different tasks. However, in practice most
message-passing systems create a fixed number of identical tasks
at program startup and do not allow tasks to be created or de-
stroyed during program execution.

Data parallelism: another commonly used parallel programming para-
digm that calls for the exploitation of the concurrency deriving
from the application of the same operation to multiple elements
of a data structure. A data-parallel application consists of a se-
quence of such operations. As each operation on each data element

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

72 2. Concurrent computing

can be thought of as an independent task, the natural granularity
of a data-parallel computation is coarse, and the concept of local-
ity does not arise naturally. Hence, data-parallel compilers often
require the programmer to provide information about how data
are to be distributed over processors, in other words, how data are
to be partitioned into tasks. The compiler can then translate the
data-parallel program into an SPMD formulation, thereby gener-
ating communication code automatically. The implementation of
the data-parallel paradigm is represented, as an example, by the
High Performance Fortran (HPF) parallel programming language.

Shared memory: for this programming paradigm tasks share a com-
mon address space, which they read and write asynchronously.
Various mechanisms such as locks and semaphores may be used
to control access to the shared memory. An advantage of this
paradigm from the programmer’s point of view is that there is no
notion of data ownership, and hence there is no need to specify ex-
plicitly the communication of data from producers to consumers.
This paradigm can simplify program development. However, un-
derstanding and managing locality becomes more difficult and this
is an important consideration that need to be considered on most
shared-memory architectures. It can also be more difficult to write
deterministic programs.

In this section only the message passing paradigm will be taken into
account since it represents the de-facto standard in directive parallel
programming.

2.4.1 The a priori design of a parallel application

Regardless the adopted paradigm, the methodological design of a scal-
able parallel application must follow well determined steps. In fact,
most programming problems can be tackled using different parallel ap-
proaches. The best solution may differ from that suggested by existing
sequential algorithms. The design methodology described here and
proposed by Ian Foster [66] is intended to foster an exploratory ap-
proach in which machine-independent issues (such as concurrency) are
considered early and machine-specific aspects are delayed until late (or
if possible left with specific software of the machine). This methodol-
ogy structures the design process as four distinct stages: partitioning,
communication, agglomeration, and mapping, as sketched in Fig. 2.25.

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

2.4. Concurrent computing 73

Figure 2.25: A design methodology for parallel applications.

Partitioning

The computation that is to be performed and the data involved are
decomposed into small tasks. Practical issues such as the number of
processors in the target computer are ignored, and attention is focused
on recognizing opportunities for parallel execution. In particular, this
stage consists in defining the computational grain of the parallel ap-
plication, taking care of pushing the partitioning at the lowest level
ensuring a good flexibility. Such a partition can be undertaken at both
data and computation levels:

- domain decomposition: this technique first decomposes the data
associated with a problem and then partitions the computation
that is to be performed, typically by associating each operation
with the data on which it operates.

- functional decomposition: this technique represents a different and
complementary way of thinking about problems. In this approach,
the initial focus is on the computation that is to be performed

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

74 2. Concurrent computing

rather than on the data manipulated by the computation. After
being successful in dividing the computation into disjoint tasks,
one proceeds into examining the data requirements of these tasks.
These data requirements may be disjoint, in which case the parti-
tion is complete. Alternatively, they may overlap significantly, in
which case considerable communications will be required to avoid
replication of data.

Communication

Once the partition into very small tasks of data and computations has
been performed, the communication required to coordinate the exe-
cution of the various tasks needs to be determined, and appropriate
communication structures and algorithms need to be defined. The
tasks generated by the partitioning can, in general, execute concur-
rently though they cannot execute independently. Usually the com-
putation to be performed in one task will require the communication
of data associated with another task. Communication requirements
differ depending on whether one has performed a domain or a func-
tional decomposition. In fact in the former case, the implementation of
communications between different tasks can be difficult establish since
partitioned data often remains tightly coupled. On the contrary, if a
functional decomposition has been adopted, communications can be
easily decoupled.

Agglomeration

The tasks and communication structures defined above need to be eval-
uated with respect to performance requirements and implementation
costs. This may request that individual tasks are combined into larger
tasks to improve the performance or to reduce the development costs.
At this stage one has to decide if the granularity, derived by the parti-
tioning stage (in which as many tasks as possible have been defined),
is acceptable or if one has to push the granularity to a coarser level. In
general, one looks for tasks (and communications among them) to be
associated into greater tasks. At the end of this stage it is advised to
minimize the overall communication and to obtain a number of tasks
larger than the number of processors.

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

2.4. Concurrent computing 75

Mapping

Tasks are assigned to the various processors in a way that attempts
to maximize the processor utilization and minimize the communication
costs. The main goal of this stage is to ensure an optimal load-balancing
between different nodes (processors) of the platform. In this final stage
we have to decide where each task has to be executed, depending on
the used platform. In general two strategies can be adopted:

- Tasks which can be executed independently are mapped on differ-
ent physical processors

- Tasks which keep a high degree of coupling are mapped on the
same processor.

Clearly, these two strategies might sometimes conflict. In this case the
design will require some tradeoffs. Also, resource limitations may re-
strict the number of tasks that can be mapped on a single processor or
the number of processors that the tasks may use. In order to perform
the mapping of the tasks there are many load balancing algorithms that
help the user. Obviously the user based on his/her knowledge of the
application may decide to apply one of them like recursive bisection,
local algorithm, probabilistic method, etc. The user can also choose
to leave to the Load Balance utility of the machine in order to take
care of the problem. Load Balancing struggle to avoid the unshared
state in processors which remain idle while tasks compete for service
at some other processor equalizing the load on all processors. Algo-
rithms for load balancing have to rely on the assumption that the on
hand information at each node is accurate to prevent processes from
being continuously circulated about the system without any progress.
This is one of prerequisites to utilize the full resources of parallel and
distributed systems. Load balancing may be centralized in a single pro-
cessor or distributed among all the processing elements that participate
in the load balancing process.

Such load balancing algorithms are the Recursive Bisection, the Local
algorithm, the Probabilistic Method , the Round-Robin and the biasing
algorithm.

2.4.2 Models of parallelism

The a priori design of a parallel application is driven by the adoption
of some standard models of parallelism. These models can be classified

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

76 2. Concurrent computing

on the basis of the exploited parallelism:

Flux parallelism (predetermined interactions between data):

- seq in which parallelism is not exploited

- farm in which each process is assigned a determined work-load, by
a central unit that manages the distribution of tasks. This model
is also called Master-Slave or Master-Worker paradigm)

- pipe the whole computation is partitioned into different stages
each of which is assigned to a process as in a chain. Each stage of
the pipe can be parallelized at a finer grain

- loop in which a block of processes is iterated in time

- data parallelism (few dependencies among data and there is no
need for a great number of interactions):

- map completely independent data

- reduce subsequent associative reduction of data

- comp sequential composition of modules with some interactions

In Fig. 2.26 a sketch of the farm model is given.

Figure 2.26: The farm model.

2.4.3 Tools for parallel programming: MPI

As already pointed out above, an important paradigm for parallel com-
puting is Message Passing. This paradigm has been developed in order

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

2.4. Concurrent computing 77

to be used on distributed memory platforms although it can be also im-
plemented efficiently on a shared memory architecture. In the message
passing paradigm a computation consists of one or more processes that
communicate by calling library routines to send and receive messages
to/from other processes. In this respect, two are the main libraries that
implement the paradigm: PVM (Parallel Virtual Machine) [67–69] and
MPI (Message Passing Interface) [70]. We deal in detail here with
MPI (in particular, MPI-1 implementation) both because MPI is in-
creasingly becoming the standard library both in homogeneous (MIMD
and MIMD-like platforms) and heterogeneous (GRID systems) environ-
ments and because of the work made on it by our research group for
the European project EGI-Inspire [71]. Accordingly, we can summarize
the main goals of MPI as follows:

- provide source-code portability

- allow efficient implementations

- offer a great deal of functionality

- support heterogeneous parallel architectures

In the message passing programming model, each process has a local
memory and no other process can directly read from or write to that
local memory. Parallel programming by definition involves cooperation
between processes to solve a common task. There are two sides to the
question of programming processes that cooperate each other. The
programmer has first to define the processes that will be executed by
the processors and then to specify how those processes synchronize and
exchange data with one another (as already specified at an abstract
level in the previous section). A central point of the message-passing
model is that, obviously, the processes communicate and synchronize
by exchanging messages. As far as the processes are concerned, the
message passing operations are just calls to a message passing interface
that is responsible for dealing with the physical communication network
linking the processors.

Prior to exchanging messages it is needed to determine the “commu-
nication universe”, in which point-to-point or collective operations can
act, by defining a communicator. Each communicator contains a group
of processors and the source and the destination of a message is identi-
fied by the process rank within that group. In MPI there are two types
of communicator here discussed

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

78 2. Concurrent computing

- Intracommunicator used for communicating within a single group
of processes,

- Intercommunicator used for communicating within two or more
groups of processes (in MPI-1, an intercommunicator is used for
point-to-point communication between two disjoint groups of pro-
cesses).

Messages are central to the message passing programming model. They
are exchanged between processes. When two processes exchange a mes-
sage, data is copied from the memory buffer (or memory locations) of
one process into the memory buffer of the other process. The data sent
in a message comes under two headings: contents and envelope. The
contents of the message are pure user data and are not interpreted nei-
ther by the communication interface nor by the communication system
that lies behind that interface. The data on the envelope, however,
is used by the communication system to manage the copying of the
content of the message between local memories.

The simplest form of message is a point-to-point communication in
which a message is sent from a sending to a receiving process. Only
these two processes need to know anything about the message. The
communication itself consists of two operations: send and receive. The
send operation can be either synchronous or asynchronous depending
on whether or not it is completed1 before or after the corresponding
receive operation has started. MPI point to point prinitives can be
classified in blocking or non blocking procedures. The blocking ones
return the control only when the corresponding communication is com-
pleted. The non blocking ones return the control straight-away and
allow the process to continue performing other work. Many message-
passing systems do also provide primitives allowing large numbers of
processes to communicate. Such primitives implement the so-called
collective communications and they are of blocking type. Examples of
these are barrier, which synchronizes the processors, broadcast, which
allows a one to many communication and reduction operations which
takes data items from several processors and reduces them to a single
data item that may or may not be made available to all of the partic-
ipating processes. Moreover, the library includes primitives which are
particularly designed to perform a collective domain decomposition.

1the completion of the communication means that memory locations used for the mes-
sage transfer can be safely accessed. MPI communication modalities differ from the con-
ditions needed to completion.

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

2.4. Concurrent computing 79

For example, the most commonly used are:

- scatter (one-to-all communication): different data are sent from
the root process to all the others in the MPI communicator (in-
cluding the root process)

- gather (one-to-all communication): different data are collected by
the root process from all other processes in the communicator (in-
cluding the root process). It is the opposite of the scatter primi-
tive.

A synopsis of the most commonly used MPI primitives are listed in
Table 2.1.

Table 2.1: Most common MPI primitives.

Primitive Description
MPI comm size Creates the communicator processes
MPI comm rank Gives the rank to each process of the communicator
MPI send Sends a message to another process
MPI recv Receives a message from another process
MPI barrier Blocks the caller until all processes have called it
MPI bcast Broadcasts a message form one process to all processes
MPI gather Each process sends a message to a root process

that receives and stores it in rank order
MPI scatter The inverse operation of gather
MPI reduce Combines the elements of an incoming data using a

pre-determined operators in the root memory space

Clearly, despite its great portability and diffusion, MPI shows some
severe limitations:

1. the management of the communication is entirely on the hands of
the programmer

2. the library does not provide models and tools for efficiency evalu-
ation (e.g. to predict the scalability of the application on the basis
of the implemented granularity) and a profiling of the program in
this sense is needed;

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

80 2. Concurrent computing

3. portability is sometimes difficult and a deep restructuring may be
necessary to implement the parallel code;

4. due to its explicit nature, MPI is error-prone.

A pictorial representations of Broadcast, Gather and Scatter primitives
are given in Fig. 2.27.

Figure 2.27: A pictorial view of some collective primitives.

Charm++

It has been developed at the University of Illinois, a machine indepen-
dent parallel programming language written in C++ called Charm++.
The design of the system is based on the following tenets:

- Efficient Portability: Charm++ programs run unchanged on MIMD
machines with or without a shared memory. The programming
model induces better data locality, allowing it to support machine
independence without losing efficiency.

- Latency Tolerance: Message-driven execution, supported in Charm++
is a mechanism for tolerating or hiding communication latency. In
message driven execution a processor is allocated to a process only

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

2.4. Concurrent computing 81

when a message for the process is received. This means that when
a process blocks, waiting for a message, another process may ex-
ecute on the processor.

- Dynamic Load Balancing: Charm++ provides dynamic (as well
as static) load balancing strategies.

The package consists of potentially medium-grained processes (called
chares), a special type of replicated process, and collections of chares.
These processes interact with each other via messages. There may
be thousands of medium-grained processes on each processor, or just
a few, depending on the application. The “replicated processes” can
also be used for implementing novel information sharing abstractions,
distributed data structures, and intermodule interfaces. The program-
ming language can be considered a concurrent object-oriented system
with a clear separation between sequential and parallel objects.

2.4.4 The evaluation of performances and scalabil-
ity

Execution time is not always the most convenient metric to use to
evaluate parallel algorithms performance. Given that the first goal of
parallel programming is make an application faster than its sequen-
tial implementation, one needs some parameters able to quantify the
achieved performance. The most popular parallel performance param-
eters are Speed up (S) and Efficiency (E). The speed up S is calculated
as:

S(n) =
Ts

Tp
(2.1)

where Ts represents the execution time of the best sequential implemen-
tation of the code and Tp is the execution time of the related parallel
implementation on n processors. The speed up is a pure number and
its maximum value is equal to the number of processors used in the
calculation. The corresponding efficiency (E) is given by:

E =
S(n)

n
(2.2)

The efficiency can be seen as the fraction of time that the processors
spend in doing useful work. Sometimes it may happen that the calcu-
lated speedup is greater than the number of processor. This behaviour

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

82 2. Concurrent computing

is called superlinear . This effect is usually related to a better use of
fast memory, such as cache memory. In fact, if the parallelization of the
application allows the data to be kept in cache (rather than in memory)
during the calculation, costs of memory access decreases to make the
efficiency greater than 1 (and the speedup superlinear).

A model able to predict the theoretical maximum speed-up using mul-
tiple processors is the Amdahl’s law which compares the expected
speedup of the parallelized implementation of an algorithm with that
of the serial algorithm, under the assumption that the problem size
remains the same when parallelized. More in detail, if P is the fraction
of a program that can be parallelized and (1 − P) is the fraction that
cannot be parallelized (i.e. the strictly serial fraction), then the maxi-
mum speedup that can be achieved using n processors is given by the
equation

S(n) =
1

(1− P) + P
n

(2.3)

2.5 Concurrency on the network: the Grid

In very recent times Grid computing has emerged as a new important
field of concurrent computing in heterogeneous environments. Grid
computing is focused on large-scale resource sharing, innovative appli-
cations and, clearly, high throughput computing. The Grid concept
was effectively born in the mid ’90s and it has been defined as [72]:

A computational grid is a hardware and software infrastruc-
ture that provides dependable, consistent, pervasive and in-
expensive access to high-end computational capabilities.

In this respect, the Grid deserves to be considered separately from
parallel computing. Grid computing is not aimed at high-performance
computing. It is rather focused on high-throughput computing for com-
plex computational applications which need the gathering of a large
ensemble of computer resources and expertises. Accordingly, the basic
problem lying behind the Grid concept is related to the coordinated
sharing of the resources. This means easy access to all kind of available
computing platforms, software, data and other resources like human
skills.

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

2.5. Concurrency on the network: the Grid 83

2.5.1 The foundations of Computer Grids

Computer Grids are characterized by the heterogeneous nature of their
wide ensemble of computing hardware components and by the compos-
ite nature of the applications considered. Therefore the establishing of
a production Grid requires the implementation of several components.

The first characteristic feature of a Grid is the composition of different
expertises related not only to the involved hardware, but also to the
specific components of the problems tackled. The management of these
competence based instrumentation and tools requires specific attention
when building demonstrators for the Grid.

The second critical feature is given by the nodes of the Grid. The user
can make direct use of just one type of computer, typically a desktop
workstation, not only to write, debug and compile the codes but also
to launch the simulation. A bunch of high performance computers or
supercomputers can be chosen to take care of running the codes and
crunching the data fed to them. Other computers may be used either
to take care of rendering the results in a graphical form or to power a
virtual reality display device.

The third feature of a Grid is the communication software to make
the whole collection of codes user-friendly. Communication software
bridges all of the gaps, between different computers, between computers
and people, even between different people. This turns the physical
connections between computers from that of a collection of individual
machines into that of an interconnected computing system.

The fourth feature of the computational Grid is the physical network
that links the various machines. Networks with high bandwidth and low
latency are the most favored to provide rapid and reliable connections
between the machines. To actually communicate over these physical
connections it is also necessary to have some smart communication
software running.

Given that we have an interconnected, communicating network of com-
puters, processors with memory, one further component is needed. This
fifth feature is something like an operating system that can be used
to configure, manage, and maintain the Grid computing environment.
This virtual environment needs to span the extent of the computa-
tional Grid and makes it usable by both administrators and individual
users. Such an environment will enable machines and/or instruments
that may be located in the same building, or separated by thousands

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

84 2. Concurrent computing

of miles, to appear as one system. This virtual environment, therefore,
must provide the administrators all the functions which allow her/him
to time the system management tools to deal with a changing hetero-
geneous platform. This software needs also, to speak, on the side of
the user, the language he is used to and has, therefore, to fall into the
category of problem solving environments (PSE). More in detail such
an environment has to allow the user to get the best from the plat-
form both in preparing input data and at running time with no need
to get involved in managing related technicalities. The most popular
denomination of this type of software is “middleware” and still needs
a significant amount of designing and implementing.

The main middleware distributions currently used in European pro-
duction grids are ARC [73], gLite [74] and UNICORE [75]. They sup-
port now a large number of user communities with complementary
requirements and dimensions, ranging from teams of a few individuals
to very large international collaborations with thousands of researchers
and tens to hundreds thousand jobs daily. These middleware solutions
have become a reference in many countries also outside Europe (Asia-
Pacific, Africa, India, China, South America, etc.) thanks to the efforts
of EC-funded international projects. Presently, the european standard
in Grid computing is represented by the gLite middleware [74], (that
derives from the Globus middleware [76] and has been developed at the
Argonne National Laboratory) developed through collaborative efforts
of more than 80 people in 12 different academic and industrial research
centers as part of the EGEE Project [77] (see later for more detail).

Although the existing middleware has demonstrated the ability to sup-
port a production infrastructure, there is also clear evidence that it
will need to evolve in response to the evolution of technology and to
the continuous flow of user and operation requirements in areas such
as functionality, robustness, usability, deployment, adherence to stan-
dards, interoperability with other infrastructures, with the additional
constraint to maintain interface stability. For the above mentioned rea-
sons, the European Middleware Initiative (EMI) [78] project has been
established to deliver a consolidated set of middleware products based
on the four major middleware providers in Europe - ARC, dCache [79],
gLite and UNICORE. The products, managed in the past by these sep-
arate providers, and now developed, built and tested in collaboration,
are for deployment in EGI [4](as part of the Unified Middleware Dis-
tribution or UMD [80]), and other distributed computing infrastruc-
tures, extend the interoperability and integration between grids and

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

2.5. Concurrency on the network: the Grid 85

other computing infrastructures, strengthen the reliability and man-
ageability of the services and establish a sustainable model to support,
harmonize and evolve the middleware, ensuring it responds effectively
to the requirements of the scientific communities relying on it.

2.5.2 The EMI Project

The mission of EMI is to:

- deliver a consolidated set of middleware components for deploy-
ment in EGI [4] (as part of the Unified Middleware Distribution -
UMD), PRACE and other DCIs,

- extend the interoperability and integration with emerging com-
puting models,

- strengthen the reliability and manageability of the services and
establish a sustainable model to support,

- harmonise and evolve the middleware, ensuring it responds effec-
tively to the requirements of the scientific communities relying on
it.

For several years there have been many issues surrounding the inte-
gration of Open Grid Services Architecture [81] (OGSA) concepts in
Distributed Computing Infrastructures (DCIs) and standardisation of
Grid services within Grid middleware systems provided by EMI. OGSA
represents a massive architecture in the context of distributed systems
based on the concept of Grid services that cover functionalities of many
technical areas such as compute, data, and security. The issues can be
partly explained by the fact that working interactions among numerous
Grid services as envisaged by OGSA are non-trivial when we consider
their implementations based onWeb services message exchanges. These
exchanges essentially represent an XML-based [82] Remote Procedure
Call (RPC) where each single difference in the correspondingly used
XML-based protocol or schema can break the interconnection between
EMI services and their clients. Standardisation of these XML-based
protocols or schemas bears the potentiality of enabling more function-
ing and stable interconnections between the EMI Grid services which
form together a DCI (thus enabling interoperability) with other DCIs
and similar infrastructures which adopt the same standards.

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

86 2. Concurrent computing

Such aforementioned common open standards can be defined as follows:
A common open standard is any standard developed by a standard-
ization development organisation (SDO) following an open process and
being commonly relevant to the e-Science community. Those standards
are typically normatively defined and publicly available. In principle,
EMI works with normatively defined in specifications standards while
other standards are still considered as emerging open oned because they
are not implemented by many technology providers yet.

The EMI middleware is addressing four technical areas: Computing,
Data, Security and Infrastructure.

Compute Area: include middleware services and corresponding client
components involved in the processing and management of user
requests concerning the execution of a computational task. They
cover the interaction with Local Resource Management Services,
the provision of a common interface to the computational re-
sources of a site (the so-called Computing Element) and the avail-
ability of high-level meta-scheduling, workflow execution and task
tracking functionality.

Data Area: include middleware services and corresponding client com-
ponents involved in the processing and management of user re-
quests concerning storage management, data access and data repli-
cation. Multiple storage solutions exist, addressing different types
of resources (disk, tape or a combination of the two) all export-
ing the same Storage Resource Management (SRM) interface (the
so-called Storage Element). Data access libraries are available for
storage systems not offering a POSIX interface towards the com-
putational resources. Data and metadata catalogues track the
location of copies of data chunks in multiple places.

Security Area: include middleware services and components that en-
able and enforce the Grid security model, allowing the safe sharing
of resources on a large scale. They cover identity management,
Virtual Organization membership management, authentication,
delegation and renewal of credentials, and authorization.

Infrastructure Area: include middleware services and components that
provide common information and management functionality to de-
ployed Grid services. They include the Information System and
Service Registry, which provide a view of the services available on
the Grid together with their characteristics; the messaging infras-
tructure, that allows to collect and distribute messages generated

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

2.5. Concurrency on the network: the Grid 87

by Grid services or user tasks; the service monitoring and man-
agement providers that allow the retrieval of Grid services status
information and service state management; the Logging and Book-
keeping services that allows collecting, aggregating and archiving
job execution information; the accounting functionality to col-
lect, distribute and publish information concerning the usage of
resources This area also deals with internal infrastructure compo-
nents, such as service containers t hat are required for middleware
services.

The EMI middleware adopts many software components that imple-
ment the above described services.

2.5.3 Towards the European Production Grid

Under the pressure of the Physics community that, at that time, was
planning the Large Hadron Collider (LHC) experiment at CERN, the
European Union funded within the Framework Programs 6 and 7 (FP6
and FP7) the design and the construction of a Europe wide production
Computing Grid. The first project to be approved was the “Research
and Technological Development for an international Data Grid” in the
year 2001 with a budget of 12 million€. Then on April 2004 the already
mentioned project called EGEE (European Grid for E-science in Eu-
rope) [77] has been first approved for two years under the coordination
of the technology division of CERN. This 24 months project of FP6 had
a cost of over 46 million € and was aimed at gathering a high capacity
complex distributed system to support the LHC experiment. It was
based on a consortium of over 70 institutions of 27 Countries. Its suc-
cess went well over the goals of the LHC experiment and the boards of
the European Union. Because of this, the project was renewed twice for
additional two years each time (EGEE II and EGEE III respectively)
and the acronym dropped its “in Europe” specification to reflect the
new global mission of the project. As a matter of fact, the importance
of e-Science for researchers in academia and industry became more ap-
parent and the benefit to innovation from the EGEE e-Infrastructure
that simultaneously supports applications from various scientific ar-
eas, providing a shared pool of resources, independent of geographic
location, with round-the-clock access to major storage, compute and
networking facilities became more substantial. The EGEE project sig-
nificantly extended and consolidated its infrastructure to link national,

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

88 2. Concurrent computing

regional and thematic Grid resources and interoperate as well as with
other Grids around the globe. The resulting high capacity, world-wide
infrastructure rapidly surpassed the capabilities of local clusters and
individual centres, providing a unique tool for collaborative computing
in science (“e-Science”). So far, several large- and small-scale com-
munities use the EGEE infrastructure as an every-day tool for their
work. Applications deployed come from High Energy Physics, Life Sci-
ences, Earth Sciences (including the industrial application EGEODE),
Astrophysics, and Computational Chemistry. EGEE has expanded the
portfolio of supported applications to include Nuclear Fusion as well as
other disciplines.

Figure 2.28: Partner countries of the EGEE project.

In the end EGEE has established a Consortium consisting of more than
90 partners from 32 countries, grouped into 13 federations and repre-
senting almost all major and national Grid efforts in Europe (see Fig.
2.28) as well as projects from the US and Asia. In addition, a num-
ber of related projects have extended the infrastructure further, to the
Mediterranean area, Baltic States, India, Latin America and China.
Combined with other related projects spurred out from or affiliated
with EGEE, this project has played around the world. The project has
managed also to constitute organized Virtual communities (called Vir-
tual Organizations or VO) devoted to gather together in a structured
way the members of a given scientific community.

Given the success of the EGEE programme, it has become unavoid-
able to build on its achievements and prepare the transition towards a
sustainable infrastructure which the main actor is, nowadays, the al-

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

2.5. Concurrency on the network: the Grid 89

ready mentioned European Grid Infrastructure (EGI) [4]. The design
of EGI and of the procedure for implementing it has been the goal of
the European Grid Initiative Design Project (EGI DS) [83], approved
under FP7, aimed at implementing the required structural changes that
allowed a seamless transition to EGI that established its headquarter
in Amsterdam (March 2009) and has now become EGI.eu (february
2012). On that date the original word “Initiative” was changed into
“Infrastructure” to visibly indicating the fact that EGI is a solid reality
ensuring the continued provision of the Grid service. EGI started offi-
cially in May 2010 and it is a European coordination body managing
the relationships with the National Grid Infrastructures (NGI). In Italy
the NGI, named IGI (Italian Grid Initiative) [84], is at present a Joint
Research Unit (JRU) still waiting for formal recognition.

The main stakeolders of EGI are the NGIs, which provide on national
level the services for a seamless, shared and uniform access to a variety
of computing resources, ranging from PC clusters to sites also operat-
ing supercomputers and all sorts of scientific archives (see Fig.2.29 for
details). The goal of EGI is to link existing NGIs together and to ac-
tively support the set-up and initiation of new NGIs in those countries,
where corresponding efforts do not yet exist. The characteristics of the
NGIs can be identified as follows:

1. be the only recognized national body in a country with a single
point-of-contact representing all institutions and research commu-
nities related to a national grid infrastructure;

2. have the capacity to sign the statutes of EGI.org, either directly
or through a legal entity representing it;

3. have a sustainable structure, or be represented by a sustainable
legal structure in order to commit to EGI.org in the long term;

4. mobilise national funding and resources and be able to commit to
EGI.org financially, i.e. to pay EGI.org membership fees and, if
there is a demand for such services in the NGI, request and pay
for EGI.org services;

5. ensure the operation of a national e-Infrastructure to an agreed
level of service and its integration into EGI;

6. support user communities providing general services to the appli-
cations and fostering the grid usage for new communities;

7. adhere to EGI policies and quality criteria.

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

90 2. Concurrent computing

The NGIs in Europe are currently at different levels of implementation,
ranging from individuals claiming to represent an NGI, early imple-
mentations of NGIs with a preliminary legal status to fully government
recognized legal entities. The project partners are listed in Table 2.2.

Figure 2.29: EGI and the NGIs

2.5.4 EGI Activities and user communities

As already mentioned, EGI is coordinated and managed by EGI.eu, a
not-for-profit foundation established under Dutch law. In its coordi-
nating role, and besides coordinating the infrastructure and support
services, EGI.eu provides the following services to the user communi-
ties:

Operations management : The EGI.eu Operations Team coordi-
nates and performs the activities required to deliver services at
an agreed service level to the consumers of those services. Opera-
tions is also responsible for the ongoing management of technology
deployment and technical support services.

Support and community coordination : EGI.eu coordinates sup-
port activities throughout EGI user communities and liaises with
virtual research communities and virtual organisations to source
their requirements.

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

2.5. Concurrency on the network: the Grid 91

Technology provision : All software upgrades and new programmes
deployed on EGI are produced by independent technology providers.
EGI.eu manages the outsourcing of technology developments, ac-
cording to the requirements gathered by the User Community
Board (UCB) and the Operations Management Board (OMB),
negotiates with potential technology providers and assesses the
new software quality.

Strategy, policy and collaborations : EGI.eu represents the mem-
bers of the EGI federation in the wider Distributed Computing
Infrastructures (DCI) community and champions the interests of
its communities at the European Union level. The EGI.eu over-
sees the development of EGI strategy and policy documents and
papers according to the wider European vision for research and
innovation.

Community building and outreach : EGI.eu organises EGI flag-
ship events the Community Forum in Spring and the Technical
Forum in Autumn, as well as other smaller events and work-
shops throughout the year. EGI.eu communications team leads
the community effort to promote the latest news and scientific
achievements of the research communities using EGI.

A particular effort has been put in EGI to establish and maintain re-
lationship among the different communities of users. To improve this
collaboration a number of Virtual Research Communities (VRCs) were
formed. VRCs are groups of like-minded individuals organised by dis-
cipline or computational model. VRCs typically have an established
presence in their field (for example an ESFRI project, EIROFORUM
laboratory or national research structure) and represent a well-defined
scientific or research community. VRCs are self-organised research com-
munities which give individuals within their community a clear man-
date to represent the interests of their research field within the EGI
ecosystem. They can include one or more Virtual Organisations. A
brief description of the VRCs currently supported by EGI is given be-
low.

High Energy Physics TheWorldwide LHC Computing Grid (wLCG)
is a global collaboration that links grid infrastructures and com-
puter centres worldwide, set up to distribute, store and analyse
the data generated by the Large Hadron Collider (LHC) experi-
ments at CERN. wLCG is a mature research community, both in
its own right and in its use of grid technology.

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

92 2. Concurrent computing

Hydro-Meteorology Hydro-Meteorology Research Community (HMRC)
deals with problems involving the hydrologic cycle, the water bud-
get, and the rainfall statistics of storms. The boundaries of hy-
drometeorology are not clear-cut, and the problems of the hy-
drometeorologist overlap with those of the climatologist, the hy-
drologist, the cloud physicist, and the weather forecaster.

The Life-Science Grid Community The Life-Science VRC covers
notably the following scientific domains: bioinformatics, genomics,
biobanking, medical imaging, (statistical) analysis and systems bi-
ology (e.g., virtual physiological human). It covers research groups
from universities, research centers and industry, IT actors devel-
oping tools for Life Sciences, hospitals and ESFRIs.

Structural Biology Worldwide e-Infrastructure for NMR (WeNMR)
brings together research teams in the structural biology and life
science area into a virtual research community at a worldwide
level, focusing on biomolecular Nuclear Magnetic Resonance (NMR)
and Small Angle X-ray Scattering (SAXS). These research com-
munities need virtual platforms to provide user-friendly computa-
tion tools supported by an underlying high performance e-Infrastructure.

Humanities Common Language Resources and Technology Infras-
tructure (CLARIN) is committed to establish an integrated and
interoperable research infrastructure of language resources and its
technology. It aims at lifting the current fragmentation, offering
a stable, persistent, accessible and extendable infrastructure and
therefore enabling eHumanities. Digital Research Infrastructure
for the Arts and Humanities (DARIAH) was set up with the mis-
sion to enhance and support digitally-enabled research across the
humanities and arts. DARIAH aims to develop and maintain an
infrastructure in support of ICT-based research practices.

Similar agreements are currently being negotiated with other research
communities in other fields of research like:

Astro(-particle) Physics The two major VOs in this domain, Planck
and MAGIC, share problems of computation involving large-scale
data acquisition, simulation, data storage, and data retrieval. The
Planck satellite of the European Space Agency (ESA) will be
launched in 2008 and aims to map the microwave sky with an
unprecedented combination of sky and frequency coverage, accu-
racy, stability and sensitivity. The MAGIC application simulates

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

2.6. User Community Software 93

the behaviour of air showers in the atmosphere, originated by
high energetic primary cosmic rays. These simulations are needed
to analyze the data of the MAGIC telescope, located in the Ca-
nary Islands, to study the origin and the properties of high energy
gamma rays.

Earth Science Research (ESR) Earth Science covers a large range
of topics related to the solid earth, atmosphere, ocean and their
interfaces as well as planet atmospheres and cores. Recently, mem-
bers of the ESR Virtual Organization have worked on rapid earth-
quake analysis, helping the scientific community to better under-
stand these devastating natural disasters.

Computational Chemistry The main VO in the field of computa-
tional chemistry is COMPCHEM, that is managed by the Dept.
of Chemistry of the University of Perugia (IT) whose horserace
is the set of programs being part of the a priori molecular simu-
lator GEMS. Several Computational Chemistry applications have
already been ported to the Grid and have been run in produc-
tion to calculate observables for chemical reactions, to simulate
the molecular dynamics of complex systems, and calculate the
structure of molecules, molecular aggregates, liquids and solids.

2.6 User Community Software

To support user communities in their efforts to carry out research in
science and innovation, EGI-InSPIRE has promoted the development
of various tools, services, workflows and schedulers of which we list
some of the most popular ones

2.6.1 Tools and fron ends

EDMS EDMS [85] (Experiment Dashboard Monitoring System), is
a software monitoring, transferring data and site commissioning
that provides also assistance and VO management that was orig-
inally designed to support LHC, CMS, ATLAS and ALICE ex-
periments but can operate on several Grid middlewares to cover
the full range of the needed computational activities. The goal
of theEDMS is to monitor the activities of the VO supported ex-
periments on the distributed infrastructure providing a uniform

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

94 2. Concurrent computing

and complete view of the various activities like job processing,
data movement and publishing, access to distributed databases
regardless of the underlying Grid flavor.

GANGA GANGA [86] is an easy-to-use frontend for job definition and
management that provides a uniform interface across multiple dis-
tributed computing systems. Ganga is the main end-user dis-
tributed analysis tool in ATLAS and LHCb experiments, and is
also used as the foundation layer for other services such as Ham-
merCloud to manage large numbers of jobs (see HammerCloud
statistics). Ganga is a widely used tool. From May 2010 to Febru-
ary 2011 Ganga was deployed in 127 sites and was used by 1316
users (40% ATLAS, 40% LHCb, 20% others) to submit more than
250,000 jobs weekly. It main work areas are:

1. Providing persistency solutions to serve all user communities
in a scalable way.

2. Extension with a plug-in-structure for access to different com-
putational resources.

3. Integration with monitoring services, notably Dashboards, by
reusing common software elements in the presentation layers
increasing the coherence of the look and feel of the tools for
the end-users.

DIANE DIANE [87] is a lightweight task processing framework which
allows for more efficient and robust execution of large numbers of
computational tasks in unreliable and heterogeneous computing
infrastructures. DIANE is an established software tool, used by
power-users in several communities to implement complex and de-
manding task processing use-cases. The planning process involves
the interested power-users and the main features are

1. Integration of application-level monitoring information with
existing GANGA/DIANE Dashboard.

2. Worker node failure detection algorithms to make it easier for
users to specify correct values and avoid deadlocks.

Both Ganga and DIANE are used by power-users in various com-
munities both within and outside HEP for running large-scale
computing tasks and the use of these tools has been reported by
communities from more than 10 scientific fields and disciplines.
From May 2010 to February 2011 DIANE was deployed in 23
sites and was used to process more than 600,000 tasks.

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

2.6. User Community Software 95

Besides the LHC communities, the use of Ganga/DIANE tools
has been reported for UNOSAT applications, Geant4 medical and
space simulations and grid-enabled regression testing, AvianFlu
Drug Search, ITU digital broadcasting planning, LatticeQCD sim-
ulations, Fusion, Image Processing and Classification, EnviroGrids,
Simulation of Gaseous Detectors (GARFIELD).

2.6.2 Services

HYDRA

Hydra [88] is a file encryption/decryption service developed as part of
the gLite middleware. Hydra is a special secure metadata catalogue
designed to hold encryption keys. The Hydra functionality is acces-
sible in the regular gLite User Interface and Worker Nodes through
command line tools. Hydra may be deployed as a single key store or
as a distributed key store, implementing the Shamir’s secret key shar-
ing algorithm, for improved availability and higher robustness against
attacks.

A Hydra catalogue has been deployed within the EGI-InSPIRE project
as a service for the life sciences community. Hydra is mature software
and the only planed developments for this services are bug fixes and
updates to preserve the hydra functionality in the future versions of
the gLite middleware.

GRelC

During the EGI-InSPIRE project, the GRelC [89] system (the network
of GRelC services deployed within EGI) has been enhanced to support
the EGI communities with a new set of functionalities. These will be
accessed by end-users through the GRelC Portal, a seamless, ubiqui-
tous and web-based environment for the management of geographically
spread and heterogeneous grid data sources.

An important task is related to the monitoring and control functional-
ities of the GRelC system infrastructure. Such a management frame-
work is available through the GRelC Portal by means of a new set of
web pages exploiting the dashboard approach. The dashboard provides
a unified view (including charts, reports, tables) about the GRelC de-
ployment, the status of the services, the available grid-databases, the

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

96 2. Concurrent computing

supported VOs, etc. A small set of sensors are able to collect the
needed information, storing them into a relational database (named
system catalogue). The dashboard is designed and implemented tak-
ing into account the Web2.0 paradigm (e.g. an important feature is the
capability to export in other web applications some/all views provided
by the DashMon just with few HTML lines of code) and represents an
important database-oriented tool providing effective views both in the
large and in the small.

The roadmap for the GRelC service foresees the creation of the EGI
Database of Databases, a registry service accessible through a web page
that will contain all of the information about the grid-databases avail-
able in the GRelC System, the associated VOs, a short and a long
description and some other useful metadata.

Through the registry, users should be able to:

- query the registry (exploiting a keyword-based approach) asking
for specific databases, filtering by VO, keywords, domain, etc.
This will help people working in a specific domain to quickly iden-
tify available and related resources, identify key people working on
specific subjects, easily contact them to establish collaborations,
etc.

- join a specific grid-database, submitting via the web a request
to the grid-database administrator to know more about the sup-
ported VOs, etc.

- add comments on the available data and the related data sources,
being part of a community exploiting a collaborative and Web2.0
oriented approach. All of this data will be available for future
users, creating a knowledge base centered around community-
oriented topics.

2.6.3 Workflows and Schedulers

The Grid workflow managers described here are simple and linear. In
them an application just runs after reading the output of other applica-
tions, and in the more complete case imply the generation of the input
for another application and the waiting of some input for the latter
before finishing its execution.

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

2.6. User Community Software 97

Kepler

Kepler [90] is a free open source workflow application designed to help
scientists, analysts, and computer programmers to create, execute, and
share models and analyses across a broad range of scientific and en-
gineering disciplines. Kepler can operate on data stored in a variety
of formats, locally and over the internet, and is an effective environ-
ment for integrating disparate software components, such as merging
“R” scripts with compiled “C” code, or facilitating remote, distributed
execution of models. Using Keplerś graphical user interface, users sim-
ply select and then connect pertinent analytical components and data
sources to create a scientific workflow, an executable representation of
the steps required to generate results. The Kepler software helps users
share and reuse data, workflows, and components developed by the
scientific community to address common needs. The Kepler software
is developed and maintained by the cross-project Kepler collaboration,
which is led by a team consisting of several of the key institutions that
originated the project: UC Davis, UC Santa Barbara, and UC San
Diego.

P-GRADE

The Parallel Grid Run-time and Application Development Environ-
ment Portal [91] (P-GRADE Portal) is a web based, service rich envi-
ronment for the development, execution and monitoring of workflows
and workflow based parameter studies on various grid platforms. P-
GRADE Portal hides low-level grid access mechanisms by high-level
graphical interfaces, making even non grid expert users capable of defin-
ing and executing distributed applications on multi-institutional com-
puting infrastructures. Workflows and workflow based parameter stud-
ies defined in the P-GRADE Portal are portable between grid platforms
without learning new systems or re-engineering program code. Tech-
nology neutral interfaces and concepts of the P-GRADE Portal help
users cope with the large variety of grid solutions. More than that, any
P-GRADE Portal installation can access multiple grids simultaneously,
which enables the easy distribution of complex applications on several
platforms.

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

98 2. Concurrent computing

SOMA2

SOMA2 [92] is a versatile modelling environment for computational
drug discovery and molecular modelling. SOMA2 is operated through
a web browser. The SOMA2 environment offers a full scale modelling
environment from inputting molecular data to visualisation and anal-
ysis of the results. The system makes use of the scientific applications
installed in the computing system for which the SOMA2 environment
includes interface tools. The scientific programs are easily configured
and automatically executed in the SOMA2 environment. In addition,
the SOMA2 environment offers a possibility to construct a compu-
tational workflow where several programs are run one after another.
The SOMA2 environment is designed to be run so that the CGI web
application is executed as an authenticated user to provide individu-
alised and secure way of using the application. The SOMA2 modelling
environment is developed and maintained by CSC. In earlier stages
the SOMA2 R&D project was part of TEKES (National Technology
Agency of Finland) funded DRUG2000 technology program. As of
version 1.4 SOMA2 is enhanced to provide support to heavier grid
computing. This development is funded by EGI (European Grid In-
frastructure) foundation and is part of EGI-InSPIRE project.

TAVERNA

Taverna [93] is an open source domain independent Workflow Man-
agement System, a suite of tools used to design and execute scientific
workflows. Taverna has been created by the myGrid project and funded
through the OMII-UK. Taverna has guaranteed funding till 2014. The
Taverna suite is written in Java and includes the Taverna Engine (used
for enacting workflows) that powers both the Taverna Workbench (the
desktop client application) and the Taverna Server (which allows re-
mote execution of workflows). Taverna is also available as a Command
Line Tool that for a quick execution of workflows from a terminal with-
out the overheads of the GUI. Taverna allows for the automation of
experimental methods through the use of a number of different (local
or remote) services from a very diverse set of domains (biology, chem-
istry and medicine to music, meteorology and social sciences). Effec-
tively, Taverna allows a scientist with limited computing background
and limited technical resources and support to construct highly com-
plex analyses over public and private data and computational resources,
all from a standard PC, UNIX box or Apple computer.

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

2.7. User application in MPI 99

2.6.4 Parallelization libraries: MPI

Execution of MPI applications requires sites that properly support the
submission and execution of parallel applications and the availability of
a MPI implementation. For such reason the MPI sub-task has been cre-
ated to produce numerous MPI workbenches of increasing complexity
with specific high impact on the Computational Chemistry and Fu-
sion communities. These products will also have impact on other User
Communities. The core sub-task objectives are:

• Improved end-user documentation, addressing MPI application
development and job submission in ARC, gLite and UNICORE,

• Quality controlled MPI site deployment documentation,

• Outreach and dissemination at major EGI events and workshops,

• User community, NGI and site engagement, gathering direct in-
put,

• Participation in selected standardisation bodies.

MPI sub-task partners have a great wealth of experience in designing,
producing and deploying MPI applications under gLite. These range
from relatively simple codes, to large scale production workflows using
multiple externally provided (and widely used) MPI-enabled libraries.
They also engage with the gLite, ARC and UNICORE communities
producing high-level documentation for MPI application development
and submission under these middleware. As part of User Community
engagement effort, the MPI team regularly surveys Virtual Organisa-
tions, Users and Site administrators for critical feedback, acting as a
means to gather information about current deficits and future require-
ments.

2.7 User application in MPI

The University of Perugia (UNIPG) cluster contributes to the activities
of the MPI sub-task by making available applications (some of which
are in-house designed, produced and deployed) under gLite middleware
and investigating their parallel structure and their MPI implementa-
tion. UNIPG is a computer Science cluster made of researchers be-
longing to the Department of Chemistry, Department of Physics and
the Department of Mathematics and Informatics of the University of

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

100 2. Concurrent computing

Perugia. The computational research activity of UNIPG is focused on
codes of the area of Molecular and Materials Science and Technology
(MMST) community. The following sections describe the related work
performed within EGI-InSPIRE.

2.7.1 Linear algebra routines

A first study was carried out by considering the low level complexity
codes taken from typical library routines or algorithms popular among
the MMST community members. The work moved from preliminary
attempts to implement of some linear algebra computation benchmarks
on a model grid platform [94] The case dealt in some detail, here, is a
set of three matrix multiplication algorithms:

• Cannon algorithm: [95] it was developed in 1969 and still rep-
resents a memory efficient version of the following matrix multi-
plication algorithm:

Ci,j = Cij +
N�

k=1

Aik ∗Bkj (2.4)

This algorithm partitions A and B matrices into square sub-blocks.
In particular, Cannon’s algorithm make use of a mesh of s2 pro-
cesses that are connected as a torus. Process (i, j) at location
(i, j) initially begins with submatrices Ai,j and Bi,j. As the algo-
rithm progresses, the submatrices are passed left and upwards, as
sketched in Fig. 2.30:

1. Initially Pi,j begins with Ai,j and Bi,j.

2. Elements are moved from their initial positions to align them
so that the correct submatrices are multiplied with one an-
other. Note, please, that submatrices on the diagonal do not
actually require alignment. Alignment is obtained by shifting
the i-th row of A i positions left and the j-th column of B j
positions up.

3. Each process, Pi,j multiplies its current submatrices and adds
to a cumulative sum.

4. The submatrices are shifted left and upwards.

5. The above two steps are repeated through the remaining sub-
matrices.

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

2.7. User application in MPI 101

Figure 2.30: Scheme of the initial step of the Cannon algorithm

The parallel algorithm will be implemented by making use of the
MPI1 and MPI2 libraries. In particular, a Master-Slave model of
parallelism will be adopted in a typical SPMD approach. More-
over, due to the requirements of the algorithm, some features of
the MPI library will be used, like the virtual topologies, the carte-
sian intra-communicators, and, depending on the platform, the
RMA operations.

• Fox algorithm: The Fox algorithm [96] is similar to the Cannon
one: in particular, it is a matrix multiply algorithm that uses
a submatrix block cyclic data distribution. The communication
pattern is asymmetrical: rows broadcast, columns rotate. Yet the
Cannon algorithm performs uniform rotations. The Fox treatment
makes the following assumptions:

1. The number of processes (p) is a perfect square;

2. The matrices to be multiplied are square of order n x n;

3. sqrt(p) divides n evenly;

The pseudo-code for the Fox algorithm reads:
q = sqrt(p) // number of rows, cols in processor grid
// A is operand 1, B is operand 2 in A * B
// C is result
// i,j = process row, column
// src, dest rows for rotating ’up’
src = i+1 mod q;
dest = i-1 mod q;
for (stage = 0; stage <q; stage++)
k bar = (i+stage) mod q;

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

102 2. Concurrent computing

broadcast(A[i,k bar]) to row i;
C[i,j] = C[i,j] + A[i,k bar]*B[k bar,j]
sendrecv(B[k bar,j],src,dest);

Also in this case, the parallel implementation will be similar to
that of the Cannon algorithm. In particular, use of virtual topolo-
gies and communicator management primitives will be adopted.

• Strassen algorithm: The standard method of matrix multipli-
cation of two n X n matrices takes O(n3) operations. Strassens
algorithm [97] is a Divide-and-Conquer algorithm that is asymp-
totically faster, i.e. O(nlg7). The usual multiplication of two 2x2
matrices takes 8 multiplications and 4 additions. Strassen showed
how two 2x2 matrices can be multiplied using only 7 multipli-
cations and 18 additions. In particular, the Strassen algorithm
multiplies two matrices, A and B, by partitioning the matrices
and recursively forming the products of the submatrices. If we
assume that A and B are n x n matrices and that n is a power of
2, if we partition A and B into four submatrices of equal size (2 x
2) and compute:
P1 = (A11 + A22)(B11 +B12)
P2 = (A21 + A22)B11

P3 = A11(B12 − B22)
P4 = A22(B21 − B11)
P5 = (A11 + A12)B22

P6 = (A21 − A11)(B11 +B12)
P7 = (A12 − A22)(B21 +B22

then it can be seen that:
C11 = P1 + P4 − P5 + P7

C12 = P3 + P5

C21 = P2 + P4

C22 = P1 + P3 − P2 + P6

If the conventional matrix multiplication algorithm is used, then
there will be approximatively 7 · 2(n/2)3 arithmetic operations
in forming the Pi matrix products and 18 · (n/2)2 operations in
adding and subtracting the submatrices on the right hand side of
the previous equations. If we adopt the Strassen algorithm, the
number of arithmetic operations is reduced from 2n3 to (7/8)2n3

in going from the conventional algorithm to the Strassen one.
In this case, the parallel implementation will be more complicated
than in the previous ones. In fact, in terms of required commu-

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

2.7. User application in MPI 103

nications the use of a divide-and-conquer parallel scheme is diffi-
cult to implement, and, in particular, the algorithm needs, from
a computational point of view, an enormous number of recursive
operations to reach the limit of the scalar x scalar multiplication.
Therefore, this algorithm, in order to run faster than the stan-
dard one, will probably need some modifications in the parallel
implementation.

2.7.2 Reactive scattering and Molecular Dynamics

The next level of complexity considered is that of Reactive scatter-
ing (ES) and Molecular Dynamics (MD) programs. For them we have
operated both on in-house developed quantum RS codes (few atoms
systems) and on popular MD packages (many particle systems). As
to quantum RS codes the work has been concentrated from the very
beginning on both fine and coarse grain MPI parallel scheme previously
developed. Particular interest was paid to the total angular momen-
tum (coarse) and to the wavefunction (or wavepacket) grid (fine grained
representation in both the time dependent [98] and the time indepen-
dent [99,100]) methods with application to the N+N2 system [101]. Pre-
viously measured efficiencies and speedups for coarse and fine grained
parallelism were confirmed by Grid calculations performed within the
MPI studies of the EGI-InSPIRE project.

As to MD packages they are based on the application of the Newton
second law F = m a, where F is the force exerted on the particle, m
is its mass and a is its acceleration for all the particles of the consid-
ered system. The related set of equations (motion equations) allow to
determine from the knowledge of the forces acting on every particle
the corresponding acceleration. Integration of the equations of motion
then yields a trajectory that describes the positions, velocities and ac-
celerations of the particles as a function of time. From this trajectory,
the average values of several properties can be determined by applying
the ergodic hypothesis (over long periods of time, the time spent by a
particle in some region of the phase space of microstates with the same
energy is proportional to the volume of this region). The method is
deterministic; once the positions and velocities of each atom are known
at a given time, the state of the system can be predicted at any time
in the future or the past. Molecular dynamics simulations can be time
consuming and computationally expensive. The potential energy is a
function of the atomic positions (3N) of all the atoms in the system.

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

104 2. Concurrent computing

Due to the complicated nature of this function, there is no analytical
solution to the equations of motion; they must be integrated numer-
ically. Different numerical algorithms have been developed for this,
with the most popular being: Verlet algorithm, Leap-frog algorithm,
Velocity Verlet and Beeman algorithm.

In the DL POLY Molecular Dynamics code [11] both the Velocity Ver-
let and Leap-frog algorithm have been implemented. For our tests
on the “valiomicine” we made use of the Leap-frog algorithm on the
EGI resources that support COMPCHEM. The executable has been
compiled statically in the UI (User Interface) machine used by COM-
PCHEM in order to assure binary compatibility. The compiler used
was ifort (academic license) linked with MPICH2 libraries. From a
preliminary analysis performed by running the glite-wms-job-listmatch
and the related JDL file in which the requirements MPI-START &
MPICH have been specified, resulted that 16 out of the 25 sites that
support COMPCHEM support also MPI applications. The reduction
in the number of sites supporting MPI from 22/25 in 2009 to 16/25
in 2010 is mainly due to the introduction of the MPI-SAM tests (now
NAGIOS tests) which assure the basic requirements for a job submitted
with MPI flags.

The performance of each site has been obtained running the DL POLY
executable sequentially in one node and in parallel in 2 ,4 ,8, 16, 32,
64 nodes on the same cluster, evaluating statistics and performances.
The global performances and the statistical analysis carried out by
submitting MPI jobs have been compared with those obtained in 2010
and in 2009.

As shown in Fig. 2.31 there is an overall improvement of the number
of MPI jobs running correctly and we believe that there is still room
for improvement, in particular in the right part of the graph where the
CPU requirements are larger than 32.

Tabs. 2.3 and 2.4 show in a more quantitative way the percentages
plotted in Fig. 2.31. That shows that abortion does still occur (prob-
ably due to a misconfiguration of some sites like hellasgrid.gr). This
leads us to the conclusion that abortion is structural and that, for pro-
duction purposes, this sites should be omitted from the pool of sites
supporting MPI using the ”Requirement” tag in the JDL.

During the tests a delay in the submission procedure has been registered
and this could be mainly due to two factors:

- excessive load of the WMS during the submission procedure

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

2.7. User application in MPI 105

Figure 2.31: Visual representation of the statistical analysis plotting the
percentage of successful jobs against the different years.

- number of CPUs required

In fact, as larger is the number of CPUs required for the calculation,
longer is the match time to have all the CPUs free in the same cluster.

2.7.3 CHIMERE multi scale model

The highest level of complexity we tackled was the MPI structuring
on the Grid of the package Chimere [102]. Chimere is the multiscale
three dimensional Chemistry and Transport Model (CTM) package,
owned by French institutes INERIS, LISA, CNRS, modeling the trans-
formations of chemical species and the production of secondary pol-
lutants in the atmosphere. Chimere, originally implemented on our
machines in Perugia within a research agreement signed with the Re-
gional Agency for the Environment (ARPA[10]) of the Umbria Region,
is believed to be one of the modellistic packages better suited to deal
with the chemistry nature of pollutants transformation like the physico-
chemical processes concerned with diffusion, transport, deposition and
photochemistry. It is in fact based on mechanisms combining a large
family of chemical processes and the transport eulerian model. Chimere
is designed to provide daily predictions of Ozone (O3), sulphur oxides
(SOx), nitrogen oxides (NOx), carbon monoxide (CO), all the volatile
organic compounds but Methane (COVNM), particulate matter (PMk

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

106 2. Concurrent computing

with k being the maximum value of the diameter of the particulate for
the considered class) and other important atmospheric pollutants.

Implementation and parallel structure

The adopted version of Chimere (the V200606A one, written in FOR-
TRAN 77 and later converted into FORTRAN 90, originally structured
to run on x86 processors and Linux operating systems) has been in-
stalled on a cluster of 8 Intel nodes (Xeon 3GHz, 4GB ram, SLC5.7
operating system, Intel compiler, Gbit network) connected to the dis-
tributed computing Grid of EGI. This version of the package has a
Multiple Program Multiple Data (MPMD) structure that is suited for
use in MPI and needs in any case the running of at least two concur-
rent processes. Chimere is structured as a task farm concurrent model
in which a main process (master) rules a certain number of processes
(workers) working for it. The master sends to the workers the task to
run and collects and stores the returned results. The method adopted
by the developers to distribute the work among the workers is of the
domain decomposition type. This method partitions the grid of the
domain and assigns part of it to each process. The nzonal x nmerid
bi-dimensional grid associated with each of the lowest eight layers of
the troposphere (computing domain) is then partitioned into rectangu-
lar subdomains characterized by the two user defined variables nzdoms
e nmdoms (with nzdoms indicating the number of subdomains in the
direction west-east and nmdoms that in the direction south-north as
shown in Fig. 2.32). The number of needed workers will be, therefore,
nzdoms x nmdoms.

In order to effectively exploit concurrency and achieve significant com-
puting throughput on the Grid a proper distribution model was adopted
[103]. More in detail, this consists of an iterative structure of indepen-
dent cycles to be executed a large number of times. Such a model ex-
ploits the fact that the dependence of the simulation relative to a given
day does only partially (for a few hours) depend on the initial concen-
trations (i.e. the values of the previous day) since they rapidly converge
to the actual solution regardless of the starting values. Accordingly, we
have restructured Chimere so as to run concurrently several simulations
for subsets of days the first of which replicates the last day calculations
of another (arbitrary) subset. Then the results obtained using various
subsets are glued together by discarding the starting day of each sub-
set. The procedure was checked by comparing with an actual serial

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

2.7. User application in MPI 107

Figure 2.32: Subdomains division in Chimere

calculation by reproducing the heat wave that hit Europe in the period
July 30 - August 3 of the year 2003 and no significant difference was
found. The procedure is articulated as follows: first, the code is com-
piled using the Intel Fortran Compiler, the NetCDF libraries [104] with
the support of the MPI libraries in order to maximize the performance
of the multi processorWorking Nodes (WNs) of the segment of the pro-
duction EGI grid available to the COMPCHEM VO. Second, the files
necessary for the execution are uploaded to the Grid environment on
one of the Storage Elements (a remote machine for the date storing
that supports, via the gridftp protocol, the data transfer between the
machines interconnected into the Grid) that supports the VO (in our
case for example the se.grid.unipg.it, SE) before submitting the job.
Third, the script is launched for execution.

Speed up and efficiecy

It has been found from the tests performed that the execution time
of Chimere appreciably depends on the number of workers used. This
seems quite reasonable due to the fact that the partitioning of the
computational domain among an increasing number of workers makes
the amount of work per processor decrease. To the end of measuring
performances, real time (in seconds) values returned by the system
command time at the end of the execution of chimere.e have been
collected. Such a quantity indicates the net usage of the CPU inclusive

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

108 2. Concurrent computing

of the time necessary to the system to meet the requests of the process
(system time).

To the end of evaluating the corresponding gain of time obtained when
increasing the number of processes, the usually plotted quantity is the
speedup (i.e. the ratio between the real time associated with the use of
a single worker and the one associated with the use of a given number
of workers). Such plot is shown in Fig. 2.33, in which the best (short-
est) times for a given number of workers are plotted. The plot has an
initial increasing trend starting from 1 (single worker) and keeps rising
(though more smoothly) to reach a speedup close to 10 when 30 workers
are used. Plotted values show large deviations from what can be extrap-
olated from the first ones. As a matter of fact, already with a number
of workers slightly larger than 10, the deviation nears 100% with the
speedup curve approaching a plateau (though still keeping a residual
positive slope). Such behaviour is typical of parallel schemes requiring
significant communication between the master and the workers that
prevents additional gains. To verify the dependence of the execution
time on the domain partitioning, the occupation of the workers has
been analyzed confirming that in the combination 2x6 with 12 work-
ers, for example, the last node is only half occupied. This means that
only 2 processors out of 4 are engaged. In fact, on the first node there
is always a processor engaged by the master task and of the remaining
3 processors one is left in occupied while the other two are engaged to
run as workers. By following the criterion of maximum occupation, the
other workers are 4 on the second node and 4 on the third node so that
they are fully occupied. The remaining 2 workers run on the 4th node
that results, therefore, half occupied. In the combination 2x5 with 10
workers, instead, the last node is totally occupied. In going from the
2x5 to the 2x6 combination the execution time increases suggesting
that the best times are those in which the last node is fully occupied
(as confirmed by the analysis of the other cases). To better single out
such effect, the speedups achieved in the cases of a fully occupied or a
partially occupied last node have been rationalized and shown in Fig.
2.34. In the graphs results corresponding to the same value of nzdoms
or nmdoms has been connected obtaining, again, the typical trend in
which the speedup smoothly increases before reaching a maximum and
decreases again afterwards. The final decrease could be rationalized
in terms of an increase of the time devoted to communications. As a
matter of fact, when subdomains are created, the cells of the computa-
tional domain are partitioned by the subroutine of Chimere and seldom

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

2.7. User application in MPI 109

Figure 2.33: Best speed up value plotted as a function of the number of
processes and the corresponding nzdoms x nmdoms combination of values
are quoted above the symbol. The dotted line indicates the ideal trend

the cells are evenly divided among the subdomains. This makes the re-
mainder of the division to be unevenly partitioned among the various
subdomains.

2.7.4 GPU computing using a cloud approach

The importance of fine grained parallelism in the codes considered has
motivated us to implement our codes also on GPUs.

GPU computing, or more in general the possibility of using the vector
processors of graphics card as computational general purpose comput-
ing units has, in fact, generated considerable interest in the scientific
community. In our case, the research effort has concentrated on the im-
plementation of the already mentioned time dependent and time inde-
pendent quantum reactive scattering codes of Refs [105–107]. However
at present increasing emphasis is being put on Cloud Computing and
more generally the opportunity to transparently use computational re-
sources, together with the consolidation of virtualization technologies,
allow to provide to the end users the needed specific environments for
their activities. This growing interest for this two aspects has fur-
ther motivated our research activity on how to use this technologies
in a grid infrastructure. For such reason, in the work carried out by

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

110 2. Concurrent computing

Figure 2.34: Plot of the speedup as a function of the number of processes
when the last node is fully occupied (upper panel) and the last node is
partially occupied (lower panel). In the two graphs constant nzdoms or
nmdoms series have been evidenced

our group [108], we provided a on-demand GPU environment (GPU
framework, Operating System and libraries) accessible via the EGI in-
frastructure making using a Cloud approach. The main purpose of the
work was to provide a ready to use GPU environments for the com-
munities using the EGI infrastructure to share GPU resources. As a
single GPU environment does not satisfy the different requirements of
these communities (such as operating systems, compilers and scientific
libraries). For this reason, the developed system provides dynamical
environments with the aim to optimize GPU resources usage. Contex-
tually, the Cloud Computing opportunity allows to take into account

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

2.7. User application in MPI 111

the GPUs as a Service (IaaS). A strategy to provide on-demand ex-
ecution environments has been proposed through the joint usage of
traditional and widespread gLite components and the popular stan-
dard EC2 [109] web-service APIs. An entire job flow that enables the
Local Resource Management System (LRMS) to discriminate the GPU
resources requests, through Glue Schema parameters, has been defined
in order to allocate, in a dynamic fashion, the required resources on a
Cloud-like infrastructure either public, private or hybrid. To achieve
this goal, part of the work has been devoted to the virtualization of
the physical GPU resources in order to make them available in a In-
frastructure as a Service (IaaS) private Cloud [110–112]. To this end
a centralized mechanism, responsible to listen for events generated by
the LRMS like job scheduling and termination, has been implemented
to keep track of each request. These events are then used to carry out
the required actions as follows: once a job is received and identified
as a GPU usage request, is treated as an event that triggers the al-
location of virtualized resources according to simple leasing rules. In
a similar way the termination of jobs are notified to a daemon that
releases the execution environment. In order to develop and test the
whole infrastructure, a fully working test bed has been built with the
adoption of the Eucalyptus software [110] system to implement a pri-
vate cloud over the cluster. We also addressed the need of the creation
of Virtual Machine Images to match the requirements of the execution
of GPU-dependent jobs, such as CUDA, OpenCL libraries and gLite
middleware.

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

112 2. Concurrent computing

Table 2.2: EGI-InSPIRE project partners.

Code Country NGI
BE Belgium BEgrid - The Belgian Grid for Research
BG Bulgaria Bulgarian Grid Infrastructure
HR Croatia CRO NGI - Croatian National Grid Infrastructure
CY Cyprus Cyprus Grid Initiative
CZ Czech Republic MetaCentrum
DK Denmark TBA
EE Estonia Estonian Grid
FI Finland Finnish Grid Infrastructure
FR France France Grilles
DE Germany NGI-DE - National Grid Initiative for Germany
GR Greece GRNET - Greek Research and Technology Network
HU Hungary NGI-HU
IE Ireland Grid-Ireland
IL Israel ISRAGRID - Israel Nat. Infra. for Grid and Cloud Comp.
IT Italy IGI - Italian Grid Infrastructure
LV Latvia Latvian Grid
LT Lithuania LitGRID
MK FYR Macedonia MARGI - Macedonian Academ. Research Grid Initiative
MD Moldova MD-Grid - National Grid Initiative of Moldova
ME Montenegro MREN - Montenegro Grid Initiative
NL The Netherlands BIG Grid - The Dutch e-Science Grid
NO Norway NorGrid - Norwegian GRID Initiative
PL Poland PL-Grid - Polish National Grid Initiative
PT Portugal INGRID - Iniciativa National de Grid
RO Romania RoGrid - Romanian National Grid Initiative
RS Serbia AEGIS - Acad. and Educat. Grid Initiative of Serbia
SK Slovakia Slovak Grid
SI Slovenia SLING - Slovenian Initiative for National Grid
ES Spain NGI-ES - Spanish National Grid Initiative
SW Sweden SweGrid - The Swedish Grid Initiative
CH Switzerland SwiNG - Swiss National Grid Association
TR Turkey TRUBA - Turkish National Grid Initiative
UK United Kingdom UK NGI - UK National Grid Iniative

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

2.7. User application in MPI 113

Table 2.3: Statistical analysis performed on the parallel jobs requiring up to
8 CPUs.

Job status % (2009) % (2010) % (2011)
Success 53 75 100
Not success 47 25 0

Table 2.4: Statistical analysis performed on the parallel jobs requiring up to
16 CPUs.

Job status % (2009) % (2010) % (2011)
Success 21 54 62
Not success 79 46 38

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

Chapter 3

Simulation Workflows

3.1 Introduction

The assemblage and running of complex simulation made of several
parts (often involving different know hows) is better managed through
workflows. Workflows [1,2] are, in fact, specifically designed for dealing
with data-intensive complex problems as is scientific research [3] espe-
cially when implemented on the grid for massive repeated executions.
In particular Scientific Workflow Management Systems (SWMS) are a
key technology aimed at integrate computing and data analysis compo-
nents, and to control the execution and logical sequences among them.
By hiding the management complexity in an underlying infrastructure,
SWMSs facilitate scientists when designing complex scientific exper-
iments, accessing geographically distributed data files, and executing
the experiments using computing resources at multiple organizations.
In this way, domain scientists can neglect inherent technicalities and
effectively use available resources while focusing on the logic of the
research problem.

Scientific workflows may have special features such as number crunch-
ing heavyness, data or transaction intensity, reduced human interac-
tion, and a large number of jobs. In contrast with business workflows
operating on rather small data sets and depending on complex control
flows, SWMSs typically adopt a data-flow model suited to perform data
intensive tasks [113]. In order to accommodate scientific workflows, an
easy and efficient way of managing the components of simulations on
the different available computing platforms is needed.

115

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

116 3. Simulation Workflows

As a matter of facts most of the SWMS have been historically de-
veloped for applications in specific scientific domains, e.g., chemistry,
bioinformatics, high energy physics, astronomy and so on. Related cal-
culations are characterized, from the execution point of view, by the
need for executing a large number of smaller independent jobs. This
means that these domains strongly depend on computing throughput.
Grid [114] promise indeed to be the platform to election for their elab-
orations. Grids have extended the number of resources available to
e-scientists when using suitable SWMSs.Yet, they cannot achieve high
performance execution providing fault tolerance and high resource uti-
lization efficiency. Up to now, in fact, little work has been performed to
integrate in SWMS High Performance Computing (HPC) requirements
(such as low latency networks). despite the fact that HPC requirements
are very common to many scientific applications and that these appli-
cations can benefit from the special features of SWMSs calling external
services and accessing remote data in a way transparent to the final
user. An important part in the workflow lifecycle [115] is represented
by the user experience, as it has to support a kind of user-driven, incre-
mental and prototypical approach [116]. Moreover, portal-based access
to workflow systems proved to be beneficial in various scientific appli-
cations [117]. The structure of workflows is associated with a graph
where each node in the graph is a processing element. While Directed
Acyclic Graph (DAG) may contain sequence, parallelism and choice,
non-DAG additionally include iteration structures. For many scientific
applications, provenance of workflows for the data they derive and for
their specification is crucial to permit result reproducibility, sharing,
and knowledge re-use in the scientific community [118]. The applica-
tion of semantic technologies for the management of scientific workflows
is gaining importance to the end of further supporting the users to cope
with the ever increasing number of already defined workflows, available
components and results [119].

3.2 COMPCHEM: the Molecular Science
Virtual Organization

An interesting use of the workflows is the one associated with the as-
semblage of the Grid Empowered Molecular Simulator (GEMS) [5] un-
dertaken by COMPCHEM VO in collaboration with the Department
of Mathematics and Informatics of the University of Perugia.

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

3.2. COMPCHEM: the Molecular Science Virtual Organization 117

COMPCHEM [6] has been assembled by the group of Computational
Dynamics and Kinetics of the Department of Chemistry of the Uni-
versity of Perugia (in which the work of the present thesis has been
performed) by gathering together a group of European molecular and
material sciences laboratories committed to implement their computer
codes on the production EGI Grid infrastructure.

3.2.1 The structure of COMPCHEM

The COMPCHEM Virtual Organization offers to its members clear
advantages for carrying out their computational campaigns (especially
when they are so complex to not be feasible using other computing
platforms) in return for taking the burden of carrying out the extra
duties necessary to work within the distributed Grid environment. Af-
ter all, the status of COMPCHEM member may imply further levels
of involvement with respect to the entry level of the VO (passive user,
first layer) that offers to the user the possibility of implementing a code
at wish for personal use. The reason for having established this entry
level (that has a limited period of validity) is to check the laboratories
on their real willingness to operate on a Grid platform. Already at this
level, in fact, several competences necessary to restructure the code to
run in a distributed way by exploiting the advantages of using a Grid
platform need to be acquired (active user, second layer). In return one
gets, as already mentioned, the advantage of distributing the code on
a much larger platform and, on top of that, easier interaction with the
other users and codes of the VO.

As sketched in Table 3.1 one becomes real member of COMPCHEM
only after committing him/ herself to open the code implemented on
the Grid to a shared usage by the other members of the VO (passive
software provider, third layer). This implies the validation of a stable
version of the code and the assemblage of all the necessary GUIs for use
by other researchers. Software providers can also provide basic services
like software maintenance services and user support (active software
provider, fourth layer).

The commitment to confer to the Grid additional hardware (especially
for those suites of codes which need special devices) after a negotiation
with the Management Committee (MC) of the VO about the relevance
of such a commitment to the strategic choices of the Virtual Organi-
zation is that of the fifth layer (passive resource provider). Also the

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

118 3. Simulation Workflows

hardware providers can provide basic services and user support (active
resource provider, sixth layer). Obviously, the conferring of both soft-
ware and hardware to COMPCHEM will take place gradually due to
the time needed to validate the software and to gridify the machines yet
during such time the user will increasingly become a true collaborator
of the VO.

A collaborator of the VO will likely devote to it also other unshared
resources (e.g. for development work). To become an effective member
of the VO and acquire the status of “COMPCHEM stakeholder” (sev-
enth layer) a user should place a specific application to the MC. While
the user status has a limited time validity (after which a user may
become either a paying customer and/or a paid supplier of services)
the status of member has, in principle, no time limit (though its terms
could be periodically revised). The stakeholder, in fact, should take
care of maintaining the software and the local segment of Grid hard-
ware (a particular attention is needed for the conferring of software,
either commercial or not, with special constraints like the payment of
fees because in this case commercial, legal and financial aspects are
better dealt centrally).

The members of the VO are requested to be proactive in providing
either their own work or attract financial resources specifically for the
development of the VO. As to contributing to the VO by providing
work this may occur under the form of participation to the manage-
ment of the Grid, to the development of SWMS, etc. As to attracting
financial resources VO members should elaborate joint applications for
funding, research projects and even develop within the VO commercial
services. However, the most important contribution to the sustain-
ability of COMPCHEM that is requested to the stakeholders is a high
dynamism in research and in the transfer of its outcomes into innova-
tion and developments (R&D). This means that, ideally, all members
of the VO should excell in basic and applied research and be ready to
provide work to be rewarded in terms of credit by the VO.

3.2.2 The structure of GEMS

As already mentioned the COMPCHEM main computational appli-
cation is the GEMS [5] workflow. For this purpose several programs
have been ported to the Grid and have been run in production. Ef-
forts are also underway to further enrich the GEMS workflow and port

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

3.2. COMPCHEM: the Molecular Science Virtual Organization 119

Table 3.1: Levels of membership in COMPCHEM.

Membership Description
level

Passive: Run a program implemented by other members
User of the VO

Active: Implement at least one program for personal use
Passive: Implement at least one program for use by

SW provider other members
Active: Interactive management of the implemented
program for cooperative usege
Passive: Confer to the Grid infrastructure at least

Grid a small cluster of nodes
deployer Active: Operates above the minimal level as support

for the Grid deployment and management

Stakeholder
Take part to the development and the management of
the VO

additional applications to the EGI infrastructure and promote wider
collaboration between the computational chemistry research groups.

The aim of GEMS is to provide a simulation environment to investigate
in an ab initio fashion chemical processes and to construct from first
principles physical observables like, for example, the measured intensity
of the product in a crossed molecular beam experiment [120] to study
reaction dynamics of complex chemical systems.

Accordingly, the design of GEMS has been founded on the following
sections: INTERACTION, DYNAMICS and OBSERVABLES (see Fig.
3.1 for more details).

INTERACTION is the first section of GEMS and carries out the theo-
retical step of the calculations which determine the electronic structure
of the system. The calculated energies (usually called potential energy
values) can be used directly (on the fly) as soon as they are produced.
Most often, instead, they are first performed for a large set of geome-
tries of the system and then properly adjusted to reproduce some known
molecular properties. Finally they are interpolated using appropriate
functional forms. Though not explicitly quoted here as a section, the
interpolation procedure represents a true section of the simulator called
FITTING that creates an accurate easy to use analytical Potential En-
ergy Surface (PES).

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

120 3. Simulation Workflows

DYNAMICS is the second section of GEMS and carries out the theoret-
ical calculations determining the dynamics of the nuclei of the system.
Most frequently these calculations are based on classical mechanics ap-
proaches. Elective approaches should be instead the quantum ones.
Yet, at present, they are feasible in a rigorous way, only for three and
four atom systems because the related computational machinery is ex-
tremely heavy. Because of this the efficient implementation of the re-
lated computational procedures on the computing grid is an extremely
active field of research.

OBSERVABLES is the final section of GEMS and carries out the neces-
sary statistical and model treatments of the outcomes of the theoretical
calculations to provide an a priory estimate of the monitored (mea-
sured) properties of the system. Obviously, theoretical calculations
may be confined only to a mere geometrical analysis of the molecular
system or to an exploration of the Potential Energy Surface (PES).
In the most rigorous approaches both the calculation of the potential
energy surface and the integration of nuclear dynamics equations are
performed and use is made of suitable computational packages. The
procedures to calculate the observable properties of the system are, in-
stead, specifically designed for the final application of interest and are
most often entirely handled by the final users.

3.2.3 Implemented applications in GEMS: Inter-
action and Fitting

There are plenty of packages that could be incorporated into the GEMS
workflows. The most popular of them are those implementing quan-
tum chemistry methods (see for example Ref. [121] for more details).
Most include the Hartree-Fock (HF) and some post Hartree-Fock meth-
ods. They may also include density functional theory (DFT). In the
years MOLPRO [122], DALTON [123] and GAMESS [124] have been
ported on the Grid and inserted then in the GEMS workflow. The-
ory and manuals for these codes are largely available and we do not
further comment on them exept for the fact that our most recent and
systematic work on ab initio electronic structure packages porting on
the Grid has focused on GAMESS-US. GAMESS-US [124] is a pro-
gram for ab initio molecular quantum chemistry. Briefly, GAMESS can
compute SCF wavefunctions ranging from RHF, ROHF, UHF, GVB,
and MCSCF. Correlation corrections to these SCF wavefunctions in-
clude Configuration Interaction, second order perturbation Theory, and

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

3.2. COMPCHEM: the Molecular Science Virtual Organization 121

Figure 3.1: Detailed wokflow of the Grid Empowered Molecular simulator
(GEMS)

Coupled-Cluster approaches, as well as the Density Functional Theory
approximation. Geometry optimization, transition state searches, or
reaction path following, vibrational frequencies with IR or Raman in-
tensities and a variety of molecular properties, ranging from simple
dipole moments to frequency dependent hyperpolarizabilities may be
computed. Most computations can be performed using direct tech-
niques, or in parallel on appropriate hardware. A detailed description
of the program is available in Ref. [125]

More significant effort has been devoted to FITTING. FITTING is the

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

122 3. Simulation Workflows

GEMS section working out the analytical representation of the ad hoc
(either by purpose generated or taken from the literature) ab initio
potential energy values by means of a suitable global functional form.
Such global analytical representation, usually called Potential Energy
Surface or PES, can be generated in different ways [126]. For example
the three body (A, B, C) case as a many-body expansion [127] in the
internuclear distances

VABC(rAB, rAC , rBC) = V (1)
A + V (1)

B + V (1)
C

+ V (2)
AB(rAB) + V (2)

AC (rAC) + V (2)
BC(rBC)

+ V (3)
ABC(rAB, rAC , rBC).

(3.1)

can be considered.

This means that the potential is written as a sum of three one-body
terms (V (1)

A , V (1)
B , V (1)

B), three two-body terms (V (2)
AB , V

(2)
AC , V

(2)
BC), plus

one tri-body term (V (3)
ABC). The one-body terms are the energies of the

separated bodies in their corresponding state (three constant values).
The IJ two-body terms are potential energy curves depending on the
related body-body distance (which include the nuclear repulsion) and
are usually expressed as low order polynomials either of the inverse or
of the damped distances rIJ . As this is the case of the GFIT3C routine
used in the present work [7], they can also be expressed as a low order
polynomial of the bond order variables (n = exp[−β(rIJ − rIJe)]), in
which rIJe is the two-body equilibrium distance, or of mixed variables
like ξIJ = rIJexp(−βIJrIJ) in which ξIJ is optimized to represent the

long-range term of the two-body potential. The three-body term V (3)
ABC

corresponds to the residual interaction due exclusively to three body
forces. The advantage of this development is that, if we impose certain
restrictions on the inter-body distances, the correct asymptotic limits
are obtained. The value of the three body residual term is easily ob-
tained by subtracting the values of the one and two body potentials
to the (if necessary adjusted to reproduce the measured spectroscopic
information of stable intermediates and fragments) calculated ab initio
values. The three body term is also formulated as a polynomial in the
above mentioned variables (let us call them basis functions bk(r) with
r being the set of coordinates adopted to describe the potential) and
ak the related coefficients.

To the end of calculating the values of the ak coefficients of the adopted
basis best fitting the (adjusted) ab initio values the following equation

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

3.2. COMPCHEM: the Molecular Science Virtual Organization 123

VABC(r) = aTb(r) =
K�

k=1

akbk(r) (3.2)

(where the superscript T means transpose and K the number of basis
functions) has to be solved. By interpolating the coordinates and the
potential energy values v(j)(j = 1, 2, ..., J) of the J calculated points
r(j) in order to determine the coefficients ak we consider the functional
E(V) defined as

E(V) =
J�

j=1

wj[V (r(j))− v(j)]2 (3.3)

and impose it to be stationary. This implies the solution of the following
”normal” equations

BWBTa = BWv (3.4)

in which W is a diagonal matrix made of all weights

W = diag[w1, w2, ..., wJ] (3.5)

and B the matrix of values made of the basis functions b(R).

3.2.4 Implemented applications in GEMS: quan-
tum methods

The most important and original contribution of the present thesis to
the development of GEMS is the one related to quantum reactive scat-
tering applications of three body (A+BC) systems on the DYNAMICS
section. In particular the applications considered deal with the calcu-
lation of the fixed total angular momentum quantum number J and
the exact quantum three-dimensional state-to-state partial probability
P J
vjv�j�(E), of the three body process

A + BC(v, j) → AB(v�, j�) + C (3.6)

in which v and j label the internal energetic states of the initial two
body cluster (unprimed quantities) while the corresponding v� and j�

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

124 3. Simulation Workflows

(primed quantities) label the internal energetic states of the final two
body cluster. The P J

vjv�j�(E) values calculated at a given value of the
total energy E and of the total angular momentum quantum number
J are then combined to estimate some observable quantities of the
considered process. For this purpose P J

vjv�j�(E) is formulated in terms
of the square modulus of the corresponding detailed S matrix elements
SJ
vjKv�j�K�(E) as follows:

P J
vjv�j�(E) =

1

(2Kmax + 1)

Kmax�

K=−Kmax

K�
max�

K�=−K�
max

1�

p=0

���SJp
vjKv�j�K�(E)

���
2

(3.7)

where Kmax = min(j, J), K is the helicity quantum number (the dis-
crete body-fixed projection of the total angular momentum J) and p is
the total parity. The state-specific partial probabilities, P J

vj(E), can be
then calculated by summing over v� and j�:

P J
vj(E) =

�

v�

�

j�

P J
vjv�j�(E) (3.8)

From the state-specific partial probability the state-specific cross sec-
tion, σvj(E), is derived using the following expression [128]:

σvj(E) =
Jmax�

J=0

σJ
vj(E) =

Jmax�

J=0

π

k2
vj

(2J + 1)

(2j + 1)
(2Kmax + 1)P J

vj(E) (3.9)

where σJ
vj(E) is the state-specific partial cross section with k2

vj = 2µEtr/�2
(k is the wavenumber of the system in the vj state) and µ being the re-
duced mass of the initial configuration. Converged state-specific cross
sections require the sum of all the contributing J values. By carry-
ing out the calculation for all the populated initial states at a given
temperature T , one can evaluate the thermally averaged cross section
σ(Etr) the thermal rate coefficient k(T).

Detailed S matrix elements are calculated by integrating the Time In-
dependent (TI or stationary) Schrödinger equation

Ĥψ = Eψ (3.10)

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

3.2. COMPCHEM: the Molecular Science Virtual Organization 125

with Ĥ being the system Hamiltonian and ψ the time independent
component of the nuclei.

For the present work the SJ
vjKv�j�K�(E) values are calculated using a

hyperspherical formalism in which the hyperradius ρ =
√
R2 + r2 =√

R�2 + r�2 is taken as the continuity variable of the related differential
equations and the internal component of ψ is expanded locally (at fixed
ρ values called sectors) in terms of the Delves basis functions BJM

vjK(α, θ)
(α and θ are the Delves hyperangles). The matrix of the coefficients
of the expansion g(ρ) is then propagated from the strong interaction
region (ρ = 0) to the asymptotes (large ρ values) by integrating the
following differential equations

d2g

dρ2
= O−1Ug (3.11)

in which

Ov�j�K�

vjK = �BJM
vjK |BJM

v�j�K�� (3.12)

and U the potential and kinetic energy coupling matrix

U v�j�K�

vjK = �BJM
vjK |

2µ

�2 (H̄ − E)− 1

4ρ2
|BJM

v�j�K�� , (3.13)

while µ is the reduced mass of the system and H̄ the assemblage of
all the terms of the full Hamiltonian which do not contain derivatives
with respect to ρ. The S matrix elements are evaluated by mapping
the value of the wavefunction calculated at the asymptotes onto the
product states.

Conceptually simpler is the Time Dependent (TD) approach in which
the application of the hamiltonian to the wavefunction of the nuclei is
related to its time derivative. Relevant codes considered for implemen-
tation on the Grid are:

- RWAVEPR [129] it integrates rigorously the three-dimensional
time-dependent Schrödinger equation for a generic atom-diatom
reaction by propagating wave packets. It calculates the scatter-
ing S matrix elements for given values of the vibrational quantum
number, the rotational quantum number, the total angular quan-
tum number, the quantum number for the projection of the total

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

126 3. Simulation Workflows

angular momentum on the atom-diatom vector, for a given the
parity and for a given range of total energies. From the S matrix
elements the state-to-state reaction probabilities are calculated.
The centrifugal sudden approximation (i.e. to neglect the Coriolis
coupling) can be also invoked.

- ABC [8] is a program that uses a coupled-channel hyperspheri-
cal coordinate method to solve the TI Schrödinger equation for
the motion of the three nuclei (A, B, and C) on a single Born-
Oppenheimer potential energy surface. The coupled-channel method
used involves a simultaneous expansion of the wavefunction in the
Delves hyperspherical coordinates of all three chemical arrange-
ments (A+BC, B+CA, C+AB). The quantum reactive scattering
boundary conditions are applied exactly at the asymtotes poten-
tial, and the coupling between orbital and rotational angular mo-
menta is also implemented correctly for each value of the total
angular momentum quantum number.

- MCTDH [130] is a program implementing the MultiConfigura-
tional Time-Dependent Hartree (MCTDH) method is nowadays
considered as one of the most powerful tools for the quantum
dynamics simulation of multidimensional systems. Unlike conven-
tional wave packets methods, in the MCTDH approach the wave
function is expressed on a basis of time-dependent functions, which
evolve along with the system. The use of this time-dependent ba-
sis set turns up into a much smaller basis dimension and thus
a greater computational efficiency with respect to standard wave
packet approaches.

- FLUSS [131] The fluss code performes a modified Lanczos iter-
ative diagonalisation of the thermal flux operator. The output of
the code is a set of eigenvalues and eigenstates which can after-
wards be used to calculate the thermal rate constant of a chemical
reaction. A Krylov space is generated by recursive application of
the thermal flux operator onto an initial wave function, typically a
Gaussian-type wave packet located in the vicinity of the transition
state. The matrix representation of the operator in the Krylov-
type basis is diagonalized to obtain eigenstates and eigenvalues.

Among the implemented codes also the semiclassical (SC) initial value
representation (IVR) program [132] has been implemented. SC-IVR
method calculates the thermal rate coefficients for atom-diatom sys-
tems. The program adopts Cartesian coordinates in the full space. It

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

3.2. COMPCHEM: the Molecular Science Virtual Organization 127

does not invokes the conservation of total angular momentum J to re-
duce the problem to fewer degrees of freedom and solve the problem
separately for each value of J, as is customary in quantum mechanical
treatments. The code uses the semiclassical coherent-state propaga-
tor of Herman Kluk (HK), the Bolzmannized flux operator is tuned
continuosly between the traditional half-split and Kubo forms and the
normalization integral is expressed in terms of simple constrained par-
tition functions.

3.2.5 Implemented applications in GEMS: classi-
cal methods

The second largest class of established MMST programs are the MM
(Molecular mechanics) and the Molecular Dynamics (MD) ones in which
the atoms and molecules are allowed to interact and move according
to classical mechanics equations of motion (though in GEMS using in-
house applications also quantum mechanics equations for small sys-
tems). Some of them have been already quoted in Ref. [121]. The
popular packages implemented in Grid by us are:

- VENUS [133] calculates the cross-sections and rate coefficients
for elementary chemical reactions by simulating the collisions be-
tween atoms and molecules whose initial conditions are sampled
using a Monte Carlo scheme. This application is a modified ver-
sion of the VENUS96 program by W.L.Hase (QCPE-671). It cal-
culates the trajectory for two reactants (atoms or molecules) by
integrating the Hamilton equation in cartesian coordinates. Be-
fore the collision the molecules are selected at discrete internal
energy states and after the collision a quantization of the internal
energy is also enforced on the product molecule. Initial positions
and momenta are selected by using a Monte Carlo method. A
parallelized version using MPI has been also implemented.

- DL POLY [11] is a package of subroutines, programs and data
files, designed to facilitate molecular dynamics simulations of macro-
molecules, polymers, ionic systems, solutions and other molecular
systems on a distributed memory parallel computer. The pack-
age was written to support the UK project CCP5 by Bill Smith
and Tim Forester under grants from the Engineering and Physical
Sciences Research Council and is the property of the Science and
Technology Facilities Council (STFC).

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

128 3. Simulation Workflows

- GROMACS [10] (a MD simulator primarily designed for bio-
chemical molecules, like proteins and lipids that have a lot of com-
plicated bonded interactions, that is extremely fast at calculating
the nonbonded interactions (that usually dominate simulations)
and is equipped with tools for input assemblage and output anal-
ysis.

3.3 The service oriented approach

Significant efforts have been paid by COMPCHEM to implement its
layered structure (users, software providers, grid deployers, stakehold-
ers) aimed at enhancing the cooperative services of the VO.

To this end COMPCHEM is developing tools to provide its user with
instruments for an optimized usage of the hardware and software of
the Grid along the line of an effective Service Oriented Architecture
(SOA) methodology [134]. In this spirit Grid empowered versions of
the simulators SIMBEX [135] and GEMS [5] developed by some mem-
bers of the community for the needs of crossed beam studies have been
implemented. More recently this has prompted also the development
of appropriate frameworks (like GriF [136]) allowing to define event-
related dependencies between complementary applications (which may
involve different computer environments) in a workflow-like fashion. In
progress are also the activities carried out in cooperation with the lab-
oratories of the former COST Action D37 called Grid Computing in
Chemistry: GRIDCHEM [137] and the COST Action CM1002 called
COnvergent Distributed Environment for Computational Spectroscopy
(CODECS) [138] to design and develop a collaborative grid empow-
ered simulator for Spectroscopy. A similar effort is being paid by the
members of COMPCHEM to design and develop a collaborative grid
empowered simulator for Cleaner Combustion within the activities of
the COST Action CM901 called Detailed Chemical Kinetic Models for
Cleaner Combustion [139]. Finally in a cooperative endeavour is also
being carried out within the activities of the WeNMR VO [140] to de-
sign a simulator for NMR studies.

3.3.1 A first attempt to build a workflow

By making reference to the just mentioned grid activities it is impor-
tant to describe how the SOA approach has been implemented. A

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

3.3. The service oriented approach 129

fundamental support to SOA collaborative activities is given by work-
flows [141] which facilitate the composition and coordination of different
programs in a structured and flexible execution scheme. Such work is
aimed at developing high throughput workflows by taking some specific
complex computational applications as use cases.

A first attempt to build a suitable workflow for the TI calculations was
carried out in ref [142] by writing the proper procedure needed to man-
age the flowchart of GEMS. This made it possible to calculate single E,
single J S matrix elements for some atom-diatom processes. A general
scheme for the resulting concurrent organization of the GEMS related
computer programs on the Grid is the following: a distribution proce-
dure iterates over the E, J pairs to perform the recursive TI integration
of eq. 3.11 (an equivalent TD integration is performed integrating on
time over initial conditions).

In this first workflow the computation is articulated as a coarse grained
uncoupled loop made possible by the moderate energy values considered
and, ultimately, by some adiabatic or energy shifting [143] approxima-
tion. The resulting distributed execution model is again typical of the
”parameter sweeping” type.

The developed procedure is able to handle large sets of jobs. Each job
execution requires the sending to the Grid of an execution script, of a
specific input file and of the related program. The execution script is
the same for all jobs while the input file is different for each job. In or-
der to better cope with the heterogeneous nature of both the computing
hardware and software (compilers, libraries, submission systems, etc.)
of the Grid, executable rather than source programs were distributed
over the net. In fact, in spite of the fact that the time required for
sending the source code is considerably shorter than that required for
sending its executable (moreover the sending of the executable is also
more selective in terms of the type of adoptable machines) this approach
exploits the fact that there is no need for identifying the machine com-
piler, selecting the optimal compilation options, compiling the code
and verifying that all runs give exactly the same results as the ones
obtained on the original machine.

Unfortunately, the software dependency of some computational codes
from specific libraries and compilers, seldom available in the most com-
mon Linux distributions over the grid, make this approach not always
viable and the execution of the code became strictly dependent from
the machines where the calculation is performed.

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

130 3. Simulation Workflows

3.3.2 An advanced Grid-based workflow model

To improve on the first version of the workflow, use has been made
of the high throughput execution framework GC3Pie [9] and of the
AppPot [144] cloud/grid virtual machines (both developed by the GC3
group). The specific complex computational application considered was
the implementation of GFIT3C to be used for a quantum mechanical
application being part of the Simulator.

In our work, the Python-based GC3Pie framework has been modelled
to the needs of the previously quoted GFIT3C and ABC computational
codes in order to build a flexible workflow.

GC3Pie is a library of Python classes designed for running large job
campaigns (high throughput) on diverse batch-oriented execution en-
vironments, including ARC-based computational grids [73]. It also
provides facilities for implementing command-line driver scripts, in the
form of Python object classes whose behavior can be customized by
overriding specified object methods.

At the heart of the GC3Pie model is a generic Application object,
that provides a high-level description of a computational job: list of
input/output files, what command to run, resource requirements and
limits, etc. GC3Pie translates this information into the job description
format needed by the actual execution back-end selected, e.g., xRSL
for ARC-based Grids, or a submission script for direct execution on a
batch-queuing system. Application objects can be adapted to provide
behavior customized to a specific use case as for the AppPot Virtual
Machine approach described later.

Workflow composition

GC3Pie provides composition operators, that allow treating a collection
of tasks as a single whole [145]: compositions operators can be arbi-
trarily nested, allowing the creation of complex workflows, including
workflows with cycles in them, and dynamic workflows whose struc-
ture is created at runtime by the script itself. Two base composition
operators are provided, upon which others can be created (by subclass-
ing).

The ParallelTaskCollection operator takes a list of tasks and creates
a task that executes them all independently and, compatibly with the
allowed degree of job parallelism, concurrently.

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

3.3. The service oriented approach 131

The SequentialTaskCollection operator takes a list of tasks and creates
a task that executes them in the sequence; a decision method is invoked
in between each step, which can terminate execution early (e.g., in case
of errors), but also alter the list of planned tasks.

See section 3.3.3 for an overview of how these composition operators
are applied to the GFIT3C+ABC workflow.

Command-line scripts

GC3Pie provides template command-line scripts for frequently-occurring
use cases, in the form of reusable Python objects. The most used
command-line pattern, and also the one we chose for the GFIT3C+ABC
workflow, is called a SessionBasedScript. This template script manages
a collection (“session”) of tasks (where each task can be itself a col-
lection, see above); tasks in the session are submitted to the grid and
monitored until they have ended execution; the output from completed
tasks is retrieved and stored in a configurable location. The Session-
BasedScript also ensures the session is persisted to disk and correctly
restored in case the program is interrupted or crashes and restarted
later.

The AppPot Virtual Machine

AppPot [144] is a software system comprising a standard Linux Vir-
tual Machine (VM) image and a set of auxiliary programs that make
the AppPot software self-contained so that it can be deployed by just
copying a few files. AppPot provides a way to run commands inside
the VM, possibly in a non-interactive fashion, and to copy files in and
out of the VM filesystem.

AppPot is based on the User-Mode Linux [146,147] virtualization tech-
nology. User-Mode Linux (UML) provides a way to run a Linux VM
inside a Linux host using only a code that runs in “user space” and
thus requires no “root” privileges or any other form of systems admin-
istrator support or consent. Only two files are needed for running a
UML Virtual Machine: the UML kernel and the VM disk image. The
UML kernel is a single executable file consisting basically of a regular
Linux kernel modified to run as a process in a Linux host. It is possi-
ble to compile the UML kernel statically, so that it can run on a wide
spectrum of Linux systems.

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

132 3. Simulation Workflows

Combining the features above, one can run Linux-based VMs as grid
jobs and implement user-initiated, generic application deployment on a
computational grid. Indeed, users can install a new application into a
copy of an AppPot VM, and then package the modified VM as a job’s
input data; the job control script can make use of the apppot-start
script to run any command inside the AppPot VM.

3.3.3 Workflow description

The practical motivation for implementing the GC3Pie workflow was
offered by the need for running large ABC analysis campaigns [148]. In
the description given below we start from a set of given input ab initio
points of the PES and we build the ABC binary and execute it.

More in detail the steps involved in the considered workflow are the
following:

(A) The ab initio points of the PES are passed as input to GFIT3C
which produces a Fortran file (“fitting file”) containing the PES
routine for the considered system.

(B) The fitting file is then merged into the ABC source code, which is
compiled into an executable binary.

(C) The resulting ABC binary is distributed and executed.

To develop the related workflow we considered in our work three dif-
ferent use cases:

(1) The user provides the ab initio points of the Potential Energy
Surface; this executes steps (A), (B), and (C).

(2) The user provides the fitting file (produced by a previous run of
GFIT3C or by any other means); only steps (B) and (C) need to
be executed.

(3) The user provides his/her version of the ABC executable for dis-
tribution in a parameter study fashion: only step (C) is executed.

Out of the three different use cases, of which a graphical illustration is
provided in Fig. 3.2, the first one is the most complete. For its port-
ing, in fact, different factors needed to be taken into account like the
dependencies from libraries and compilers used. As it is (i.e. without
undertaking a restructuring and a debugging of the code) the ABC
code, for example, is only compiled correctly by using the G95 Fortran

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

3.3. The service oriented approach 133

Figure 3.2: Sketch of the developed workflow showing its components and
the connections between them.

compiler [149]. As this compiler is not natively available in the most
common Linux distributions, step (B) cannot be in general executed
on the computational nodes available on a grid infrastructure. A tra-
ditional approach to this problem would require users to negotiate the
installation of the dependent software on a substantial fraction of the
execution nodes. A simpler solution to this, however, comes from a
VM-based approach: workflow steps are run within a Virtual Machine
that provides a controlled and uniform execution environment, includ-
ing all software dependencies. The AppPot software runs a Linux VM
as a Grid job, allowing to roll out the planned solution on a Grid infras-
tructure without prior negotiations with Grid systems administrators.
Moreover, the ABC code is rarely evaluated for a single set of param-
eters: in step (C) and, in general, in any parameter-sweep study, the
program must be executed several times, consuming a large amount of
CPU time. This justifies the use of an “embarassingly parallel” style
of execution, in which many instances of ABC run independently and
results are collected at the end.

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

134 3. Simulation Workflows

$ cchem_gfit_abc_workflow.py --help

usage: cchem_gfit_abc_workflow [OPTIONS] [INPUT]

OPTIONS:

[...]
--g3c G3CFILE GFIT3C input file.

--dim DIMENSIONS Surface file.

--pes FORTRAN_PES Fortran file for the potential energy surface.

Figure 3.3: Extract from the help text of the workflow driver script. Depend-
ing on the input provided by the user, a specific workflow task is created and
executed.

Implemented application classes

The workflow driver has been implemented as a command-line script
using GC3Pie SessionBasedScript template (an abstract of the script
invocation syntax and help text can be seen in Fig. 3.3). The script
searches for ABC input files by scanning an input directory (provided
by the user in the command-line) and for each combination of ABC in-
put files and ab initio points or fitting file (depending on command-line
options), a workflow task is created and executed through completion.

Following the GC3Pie development model, most of the coding effort
consisted in creating appropriate classes for specifying the workflow
logic and the relation between the parts (see Fig. 3.2 for details).

The ABC Workflow class represents the top level logic of the workflow:
it conditionally enables the MainSequentialABC class (responsible for
the source compiling stage) or the ParallelABC class (responsible for
the ABC execution stage) for every input file and parameter combina-
tion provided by the user through the command line interface, defining
the sequence of tasks to be executed.

If a compiling stage is needed, the MainSequentialABC creates an in-
stance to the Gfit3C ABC uml Application class (a SequentialTaskCol-
lection according to the GC3Pie nomenclature) responsible for control-
ling steps (A) and (B). The script is able to build an AppPot VM, with
the required software environment, in any of the execution nodes avail-
able on the Grid infrastructure and compile the source code of both
GFIT3C and ABC (or only ABC depending on the provided parame-
ters). At the end of this step, the statically compiled ABC executable
and the related log files are transferred back to the user account in the
client machine and are made available for a control check.

The management of single and multiple ABC instances are delegated to

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

3.3. The service oriented approach 135

Figure 3.4: Sketch of the Workflow portion developed to distribute the ABC
code into a grid environment making use of the GC3Pie framework.

different Application classes called ABC Application and ParallelABC
(a SequentialTaskCollection and a ParallelTaskCollection class, respec-
tively, according to the GC3Pie nomenclature). The first class makes
use of the GC3Pie libraries to submit and control the ABC execution as
a single job in a grid environment. The second class, instead, manages
the submission of multiple instances of the first class according to the
number of input files provided by the user (see Fig. 3.4 for graphical
details).

Also in this case the results produced by each computation, together
with the file logs, are saved on the client machine. Attention has been
paid to the case in which different output files must be stored in differ-
ent directories to facilitate checks and further utilization by the end-
user. Alternately, GC3Pie can leverage some features of ARC and
upload the output files to a specified Storage Element (ARC supports
the GridFTP and SRM protocols). In this case, output files are not
donwloaded to the local directory: GC3Pie specifies an output location
in the job description and the ARC server will upload the output files
to the specified SE when the job is finished.

3.3.4 Benchmark usecases

To the end of testing the computational machinery and the validity of
the developed workflow, we executed on the Swiss Multi-Science Com-

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

136 3. Simulation Workflows

putational Grid (SMSCG) infrastructure [150] the complete workflow
to deal with the exchange process

HA +HBHC(v, j) → HAHB(v
�, j�) + HC . (3.14)

In the test we imported the ab initio points (as potential energy values)
of Ref. [151]. In this approach,1therefore, the first step of the workflow
is devoted to run the GFIT3C routine to the fitting of the ab initio
points. From the fit a r.m.s. of 0.19 kcal/mol was obtained using a
polynomial of degree 7 for the two body terms and a polynomial of
degree 10 for the three body one. These values are completely in line
with those reported in Ref. [151].

In the second step of the workflow the PES Fortran routine, obtained
by the GFIT3C fitting was integrated into the ABC code. To compare
and validate the present case study, all calculations were performed by
varying E from 0.4 eV to 1.4 eV at zero total angular momentum and
diatomic parity +1.

The calculated v = 0, j = 0 state specific exchange probability is
plotted in Fig. 3.5 as a function E. The agreement with the results of
Ref. [151] is complete and provides a solid validation test of the two
workflow approaches. For more detail, in Fig.. 3.6, a decomposition of
the state specific probability into the state to vibrational (v� = 0 and
v� = 1) ones is plotted using different lines and colors.

The test was extended by considering the

Li+HF (v, j) → LF (v�, j�) +H. (3.15)

exchange process having a more general nature. Not only, in fact,
in process 3.15 the three involved bodies are different but also the
interaction has a more structured shape that have been pinpointed in
the past for leading to several peculiar dynamical features [152–166].

Such PES is slightly endoergic and shows a small barrier to reaction.
Yet the endoergic nature of the reactive process turns into an exoergic
one when including the corresponding zero point energy, allowing the
exchange process to occur (in principle) with no help of collision energy
[154,155,158].

1For the same benchmark calculation, we are experimenting the already mentioned
alternative solutions searching on the web for suitable ab initio points or, if they are not
available, starting the corresponding ab initio calculations.

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

3.3. The service oriented approach 137

Figure 3.5: The exchange probabilities calculated at v = j = 0 and plotted
as a function of E.

Figure 3.6: A detail of the exchange probabilities calculated at v = j = 0 for
v� = 0 and v� = 1 plotted as a function of E.

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

138 3. Simulation Workflows

Quantum calculations of the excitation function performed on the PLC
PES reasonably well compare with the outcomes of previous computa-
tional campaigns as well as with related measurements. An important
difference is singled out by the exploitation of the extra computational
power offered by the Grid and that has allowed to study the reaction
using a fine grid of energy values as shown in table 3.4. The key differ-
ence resides in the low energy portion of the excitation function that,
in our case, increases significantly as energy lowers [154,155].

To better assess the validity of the PES and in particular to check
their accuracy in the reaction barrier region (that is typically the PES
feature governing the low energy behaviour of the reactive cross sec-
tion) of great importance is the recent experimental work performed
at collision energy values ranging from 82 meV to 376 meV [167, 168].
More recently Loesch and coworkers [169] published data of variable
angle crossed beam experiments in which collision energy was lowered
down to 25 meV and provided clear evidence for a rising σ(Etr) as
Etr decreases below 0.1 eV (in qualitative agreement with the already
mentioned calculations [154,155] performed on PLC).

Using the GEMS workflow and exploiting the EGI Grid platform, the
S matrix was calculated for an even finer grid of total energy values
ranging from 0.25 eV to 0.45 eV (a steps of 0.0001 eV for energy values
up to 0.27 eV and 0.001 eV in the higher energy value interval). The
wavefunction was expanded into diatomic basis functions with internal
energy smaller than 1.25 eV and propagated through 225 hyperradius
sectors up to 24.0 bohr.

The J-shifting approximation [142] was used to extrapolate low J re-
sults to higher J values by assuming that the rigid rotor constant of
the process transient B = �2/2IB = �2/2µLiFr2 is 3.59 · 10−3 kcal/mol
with µLiF being the LiF reduced mass. Properties of the transient state
of the Li + HF system were derived by calculating the minimum en-
ergy path at a value of the collision angle corresponding to that of the
transition state. Transition state bond lengths were found to be 1.62,
1.31, and 1.73 Å for the LiF, HF, and LiH pairs, respectively.

The calculated v = 0, j = 0 probabilities (Ref. [170]) show that there
is no collision energy threshold to reaction and that the reactive proba-
bility is constantly 1 in a small interval of near vanishing energies (for a
range of 0.005 eV). Narrow resonance peaks are found in the low energy
region (0.005 eV - 0.075 eV) while a smoother trend characterizes the
higher energy region.

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

3.3. The service oriented approach 139

Table 3.2: Typical input parameters adopted for the present TI calculations.

Total angular momentum quantum number 0
Triatomic parity eigenvalue +1
Diatomic parity eigenvalue 0
Maximum internal energy in any channel (eV) 1.25
Maximum rotational quantum number of any channel 200
Helicity truncation parameter 0
Maximum hyperradius (bohr) 24.0
Number of log derivative propagation sectors 150
Initial scattering energy (eV) 0.25
Scattering energy increment (eV) 0.001
Total number of scattering energies 10
Maximum value of v for which output is required 0
Maximum value of j for which output is required 2

The values of σ(Etr) calculated out of the obtained detailed reactive
probabilities are plotted in Fig. 3.7. Contrary to previous results, they
lead to a perfect agreement between theoretical and experimental quan-
tities.

3.3.5 Performances and indications for further de-
velopment

Application porting and the validation runs were initially performed on
the SMSCG which runs on the Advanced Resource Connector (ARC)
middleware [73]. The GC3Pie client script was run from a user inter-
face machine at the Grid Computing Competence Center, University
of Zurich (GC3).

GC3Pie allows to programmatically set the number of simultaneous
jobs concurrently “in flight” (i.e., either running or submitted to a
remote system and waiting to run); this is a feature used to better cope
with the availability and responsiveness of the underlying infrastructure
(no need to submit all possible jobs at once if the infrastructure cannot
serve them).

For the validation test we set this number to 100 concurrent jobs. 2

2This is an empirical value we chose mostly due to the limited number of sites support-

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

140 3. Simulation Workflows

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 0.02 0.04 0.06 0.08 0.1

σ
 /

 A
2

Etr /eV

Li + FH (v=0, j=0) -> LiF + H

Figure 3.7: Plot of the J-shifting estimate of the cross section as a function
of translation energy.

After about 32 hours, we were able to collect the results coming from
712 successful job submissions, for a grand total of about 138000min
of computation time, i.e., about 2300 CPU-hours. The remaining jobs
failed due to hardware and/or software related problems that need
further investigations. The average run time of successful jobs was thus
of about 190min, or little more than 3 CPU-hours. Fig. 3.8 provides
a pictorial representation (carried out by using the code provided by
Panse [171]) of the running and waiting time for each individual job.

The gaps in the visualization should be interpreted as a concentration
of failed jobs in a short time span; a cross-analysis of the job error
messages shows that two clusters of SMSCG had a malfunction and
acted as “black holes”.

In Fig. 3.9 the number of running and pending jobs as a function of
time in the current grid submission are shown. A simulation of an
ideal submission of 100 jobs constantly running and no queue wait
time (see Fig. 3.10) takes about 26 hours to complete. According to our
simulations, the grid execution model added less than 25% overhead for
a realistic use case, involving significant waiting time at remote clusters

ing the AppPot application tag at the time we run the whole validation test.

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

3.3. The service oriented approach 141

Time (hrs)

Jo
bs

0 4 7 11 14 18 21 25 28 32

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

Legend
queue wait
run time

Figure 3.8: Representation of running and waiting times for the success-
ful jobs in the SMSCG workflow submission experiment. Each horizontal
segment represents a job; the light- and dark- colored portions of the plot
measure the waiting time (in the remote batch system queue) and the actual
running time, respectively. The gaps should be interpreted as a concentration
of failures in a certain time span.

and important malfunctions.

As a result of the work reported above we can conclude that the porting
of legacy computational chemistry applications onto the Grid infras-
tructure, together with the development of the related workflows, has
led to the building of a solid platform for assembling accurate multi-
scale realistic simulations and for establishing an advanced molecular
and material science research environment.

In particular the library of quantum mechanics set of codes of GEMS
analyzed in the first part of this section and devoted to few body calcu-
lations assembled to be offered offered to the users of the COMPCHEM
Virtual Organization for production has shown to be a useful develop-
ment field for workflows and performing implementations on Grid. On
this ground the adoption of the framework GC3Pie allowed us to define
event-related dependencies between different applications and execute
them simultaneously on a large-scale distributed computing infrastruc-
ture. The main difference with other popular workflow systems is the
programmatic approach to workflows. In GC3Pie there is no fixed and
pre-defined structure of the workflow: the entire execution schema is

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

142 3. Simulation Workflows

Time (hrs)

N
um

be
r o

f p
en

di
ng

/ru
nn

in
g

jo
bs

Legend
pending
running

0 4 7 11 14 18 21 25 28 32

0
50

10
0

15
0

20
0

Figure 3.9: Number of running (dark color) and pending (light color) jobs
plotted as a function of time in the SMSCG infrastructure submission. The
GC3Pie client was configured to check job status every 45 seconds, and try
to keep a total of 100 jobs in submitted or running status at any time.

assembled at runtime and steps can be added and removed dynami-
cally as the program progresses, adapting to the outcome of individual
computations. The implemented case study demonstrates the validity
of this approach by following different routes depending on the avail-
ability of outcomes of previous investigations. Such success paved the
way to further work on extending workflows to the molecular dynamics
of multi-body systems.

3.4 Workflow extensions to Multi-body sys-
tems

The simulation of complex multi body systems starting from first prin-
ciples is nowadays becoming increasingly popular thanks to the possi-
bility of adopting computational approaches splittable in independent
computational tasks. This property makes related computer codes the
tools of election for carrying out massive calculations and represents a
strong incentive to implement them on Grid platforms by developing
appropriate distribution models.

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

3.4. Workflow extensions to Multi-body systems 143

Time (hrs)

N
um

be
r o

f p
en

di
ng

/ru
nn

in
g

jo
bs

Legend
pending
running

0 3 6 9 11 14 17 20 23 26

0
50

10
0

15
0

20
0

Figure 3.10: Number of running and pending jobs plotted as a function
of time in a simulated “ideal” situation. In this simulation, all jobs are
submitted at the onset, and then are executed on a dedicated cluster of 100
independent CPUs; it is further assumed that no other jobs are contending
the use of the cluster. The solid blue line clearly shows that the number of
running jobs is roughly constant until the end, when there are not enough
pending jobs to fill the cluster.

For this purpose a collaborative work has been carried out to port
within GEMS on the EGI Grid environment some Molecular Dynamics
(MD) packages like GROMACS [10]. This has allowed some members
of the COMPCHEM VO to intensively use molecular simulation tools
and develop appropriate visualization tools facilitating the inspection
and rationalization of the molecular dynamics outcomes.

To this end the P-GRADE portal [172] has been used. P-GRADE
is an open source Grid Portal [172] that provides intuitive graphical
interfaces to facilitate the porting and does not necessarily require the
modification of the original code for its distributed execution on the
Grid.

The complexity of the MD applications and the flexibility of P-GRADE
has motivated us to develop a new distribution strategy in which the
execution is distributed using different computing environments: while
the main tasks are executed on the Grid, some tasks are executed
on a local cluster and other tasks require the access to a proprietary
database.

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

144 3. Simulation Workflows

Here, the new alternative strategy of using external services (SE) and
proprietary applications in COMPCHEM is discussed by exploiting the
potentialities of a new workflow developed at CESGA (see Ref. [173]).
These enhancements enable the final user to perform complex simula-
tions by combining different softwares and using the output obtained by
proprietary applications or stored in private databases as input for CPU
demanding applications running on the Grid. A preliminary analysis
on how to extend the work performed for quantum mechanics treat-
ments of few body problem to MD simulations has been first carried
out for GROMACS and then generalized to other MD packages.

3.4.1 The GROMACS program overview

GROMACS is a versatile package performing MD calculations for hun-
dreds to millions of particles. GROMACS is primarily designed to
handle large biochemical molecules like proteins and lipids, which ex-
ibit quite complex patterns of bonded interactions. GROMACS is also
used by several research groups to handle large non-biological systems
(like polymers) because of its speed in calculating also non-bonded in-
teractions (which usually dominate molecular simulations).

GROMACS performs well on scalar machines and scales up satisfacto-
rily with the number of processors on parallel machines. As a matter
of fact, GROMACS showed to encompass a minimal-communication
domain decomposition algorithm, full dynamic load balancing, a state-
of-the-art parallel constraint solver, and efficient virtual site algorithms,
which allow the removal of the hydrogen atom degrees of freedom al-
lowing the use of integration time steps as high as 5 fs for atomistic
simulations. To improve the scaling properties of the common particle
mesh Ewald electrostatics algorithms, a Multiple-Program, Multiple-
Data approach has been used with separate node domains responsible
for direct and reciprocal space interactions [10]. This combination of al-
gorithms enables extremely long simulations of large systems and leads
to similar simulation performances on modest numbers of standard
cluster nodes.

3.4.2 The workflow articulation of GROMACS

The distributed version of GROMACS has been implemented on the
Grid so as to execute its scalar version on multiple Grid resources with

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

3.4. Workflow extensions to Multi-body systems 145

different input files simultaneously (the so-called “parameter study”
modality [174]). These simulations can be distributed on a large num-
ber of computers because they can run independently from each other.
As Grid resources are more exposed to faults than supercomputers,
the execution was made fault-tolerant by using a Grid-specific compo-
nent able to manage the execution of these jobs, collect Grid resources,
transfer the code with the corresponding input files to the comput-
ing elements, start the jobs, observe and supervise their execution and
finally even stage out the result files after successful completion.

As we have already mentioned the extension of the gridification work to
MD making use of P-GRADE. P-GRADE, in fact, is a Grid Portal that
provides graphical tools and services suited to help Grid application
developers in porting legacy programs onto the Grid without reengi-
neering or modifying them. P-GRADE has the structure of a workflow
enabling application developers to define the above-mentioned param-
eter study by means of a graphical environment and to generate out
of the user-specified description the Grid scripts and commands allow-
ing the execution of the various computational tasks on the distributed
Grid platform.

P-GRADE integrates batch programs into a directed acyclic graph by
connecting them together with file channels (a batch program can be
any executable code that is binary compatible with the underlying Grid
resources). In our case, the Grid resources are typically the gLite mid-
dleware [74] and a subset of the EGI processors. The file channel defines
directed data flows between two batch components like the output file
of the source program used as input file of the target program. The
workflow manager subsystem of P-GRADE resolves such dependence
during the execution of the workflow by transferring and renaming
files. After the user has defined the structure of the workflow and has
provided executable components for the workflow nodes, it has to be
described, whether to execute the workflow with just one input data
set, or with multiple input data sets in a parameter study fashion. If
the latter option is chosen then the workflow manager system of P-
GRADE creates multiple instances (one for each input data set) and
executes the workflow instances simultaneously.

The Portal server acts as a central component to instantiate workflows,
manage their execution and perform the file staging, which involves in-
put and output processes. Moreover, the P-GRADE also provides tools
to generate input data sets for parameter study workflows automati-
cally. The user has the possibility of attaching the so-called “Genera-

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

146 3. Simulation Workflows

tor” components to the workflow in order to create the parameter input
files. The workflow manager subsystem executes first the Generator(s)
and then the remainder of the workflow, ensuring that each workflow
accesses and processes the correct and different permutations of the
data files.

A simple workflow: the water case study

In order to test the workflow developed for GROMACS we used as a
case study the “Water: Energy minimization of the solvated system”
described on the GROMACS tutorials [175]. In this case study the var-
ious jobs work with different “Temperature” values for “LANGEVIN
DYNAMICS OPTIONS” in a typical scaling temperature technique.
Accordingly, the values of the bd-temp (see Table 3.3) temperatures
considered are stored in the same input file as the other input pa-
rameters of the simulation. Before the central component can start
running the GROMACS jobs, other components need to generate all
the necessary input files to be used as input during file stageing to Grid
resources.

For this reason the central component of the workflow (shown as a box
labelled GROMACS SEQ in the left hand side panel of Fig. 3.11) is
made of a bash script in which the following steps are performed:

• download of the GROMACS executable from a COMPCHEM
server;

• configure the enviroment variables;

• execute the GROMACS executable (already compiled on the User
Interface machine of the EGI Grid).

The smaller boxes attached to this central component represent the
input and output files which are used and produced by the application.
During Grid execution the P-GRADE workflow manager is responsi-
ble for preparing these files for the Fortran program and transferring
them to the EGI Computing Element. This makes the executable know
nothing about the Grid and no modification is required.

The first workflow component is an Automatic Generator (see the
GROMACS A GEN box in the upper region of Fig. 3.11). The au-
tomatic Generator is a special job type in P-GRADE. It is used to
generate input text file variations for the GROMACS job. Using the

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

3.4. Workflow extensions to Multi-body systems 147

parameter definition window of the Automatic Generator the Tem-
perature bd-temp values have been defined for the bench concurrent
simulation (see the right hand side panel of Fig. 3.11). As the param-
eter definition window of P-GRADE is highly flexible, we could reuse
a generic input file of GROMACS and put a parameter key (say p 1
as in the figure) into it. This parameter key is automatically replaced
by the actual parameter values during the execution of the workflow
to generate the input files before the GROMACS simulation jobs are
started.

The third component of the workflow is a Collector job (see the GRO-
MACS COLL box in the lower region of Fig. 3.11) which is again a
special job type in P-GRADE. A Collector in a P-GRADE workflow
is responsible for collecting the results of the parameter study work-
flow, analyzing them and creating a typical user friendly filtered result
(to be considered as the final result of the simulation). In our case
the Collector simply collects the results from the GROMACS jobs and
compresses the files into a single archive file that can be downloaded
by the user through the Portal web interface. The purpose of this step
is, in fact, to make the results of the computations accessible by the
end users.

Figure 3.11: A schetch of the workflow developed for GROMACS package.

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

148 3. Simulation Workflows

Table 3.3: Main input parameters used by GROMACS in the benchmark
calculation.

Parameter Comments
; RUN CONTROL PARAMETERS
integrator = md Integrator
tinit = 0 Start time in ps
dt = 0.002 Timestep in ps
nsteps = 10000 Number of steps
init step = 0 Initial step
comm-mode = Linear Mode for center of

mass motion removal
nstcomm = 1 Number of steps for

center of mass
motion removal

; LANGEVIN DYNAMICS OPTIONS
bd-temp = 300 Temperature
bd-fric = 0 Friction coefficient (amu/ps)
ld-seed = 1993 Random seed

. . .

3.4.3 Performances measured in COMPCHEM

The gridified version of GROMACS was made execute the input gen-
erator and the GROMACS code simultaneously on multiple Grid re-
sources. GROMACS was compiled in a static way using the standard
gnu compiler gcc/g77 and the open source atlas library. Static com-
pilations of GROMACS ensure that the program is binary compatible
with the used Computing Elements of the EGI Grid and that the pro-
gram will not run into incompatibility errors associated with the usage
of dinamically loaded libraries. As we did not modify the code any
performance improvement can be ascribed only to the Grid implemen-
tation that means to the possibility of running the package for different
sets of parameters during the same time window on the resources of
the COMPCHEM VO.

COMPCHEM relies on more than 8000 CPUs located at more than
25 European research institutes and universities with most of them

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

3.4. Workflow extensions to Multi-body systems 149

being shared among several VOs. As a consequence jobs sent by COM-
PCHEM members to these Grid resources compete for CPUs with both
other jobs of COMPCHEM and jobs of other VOs. For example, a run
of 4 GROMACS jobs in a parameter study fashion for the already
mentioned benchmark case took the average time of 100 minutes when
using 3 CPUs while the average time taken on 6, 12 and 24 CPUs was
91, 113 and 171 minutes respectively. This allow us to extrapolate an
average single CPU time of 33, 15, 9 and 7 minutes respectively. This
means that the distribution of GROMACS on the Grid leads to a def-
inite reduction of the average single CPU time if the parameter space
is larger than 3.

As the execution time of both the generator and the collector stages
are neglegible compared with that of the executor, we can assume that
the figures of time consumption quoted above roughly coincide with
those of the application as such.

This means that a GROMACS job can spend on the average as much
time in the job queue of a single CPU of a Grid resource as on the
CPU itself. This obviously means that the average execution time of
a job on the Grid is about twice as long as that on a dedicated local
machine or that the Grid execution adds about 2-8 hours to each job.
Accordingly, as soon as there are at least more than 3 GROMACS jobs
running concurrently in a simulation, the Grid based execution is more
efficient.

3.4.4 A new distribution schema: merging local
Clusters and Grid resources

First workflow approach

A new distribution strategy inspired to the one developed by CESGA
for the G-Fluxo Project [176]) has been applied to the GROMACS
package. As a result a first workflow have been implemented and tested
using the P-GRADE Grid Portal for one of the available GROMACS
tutorials [175] to exploit the interoperability between a local cluster
platform (HPC capable) and a Grid platform (mainly HTC capable).
The three jobs considered for this purpose are:

1. Vacuum: Energy minimization of the structure.

2. Water: Energy minimization of the solvated system.

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

150 3. Simulation Workflows

3. PR: Relaxation of solvent and hydrogen atom positions: Position
restrained Molecular Dynamics.

In this case the workflow is executed in the FinisTerrae cluster (1st job),
the SVG cluster (2nd job) and the EGI Grid (3rd job). The coupling
among the various jobs is taken care using a link (a semaphore) that
defines the dependency job chain. In this case the user must set all the
job ports adequately following the syntax described previously in Ref.
[176], taking into account where the job is executed so in order to make
the portal aware of all the information needed for file transfers. This is
needed to overcome the limitation present in the P-GRADE Grid Portal
version 2.7 file transfer management system that does not allow direct
file transfer between different platforms (different Grid middlewares
following P-GRADE Grid Portal nomenclature).

Second workflow approach

The second workflow, also implemented and tested for GROMACS, is
made up of a chain of three jobs where each job runs on different plat-
forms (local cluster, CESGA SVG, a laptop and the Grid infrastruc-
ture) [173]. This workflow takes advantage of some extra functionalities
added to the P-GRADE Grid Portal and in particular:

• File Management and Communication via SSH protocol between
different platforms taking into account the dependencies coming
from the workflow definition;

• Job Submission and Monitoring using DRMAA implementation
included in the Distributed Resource Management Systems (DRMS)
in order to use local resources;

• External services called via web making use of the POST/GET
html protocol.

It makes use of the following common tools and applications to per-
form accurate simulations. A schematic representation of the workflow
assembled for the study reported in the present paper is illustrated:

1. CSD (Cambridge Structural Database [177]): the CSD is accessed
through a CESGA server (SVG). This job runs ConQuest in batch
mode through the command ”cqbatch”. A simple query is per-
formed looking for compounds whose name includes the term

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

3.4. Workflow extensions to Multi-body systems 151

”azaindole” included. As a result a compressed file (azaindole.tgz)
in which all the structural 3D information in form of PDB files
coming from the previous query are stored, is returned.

2. PRODRG: This job takes as input the azaindole.tgz file and runs
a curl [178] script to make use of an external web server, the
Dundee PRODRG2 Server [179] that provides molecular topolo-
gies for X-ray refinement/MD and drug design/docking. This job
runs from the laptop connected to internet and configured as a
CLUSTER-GRID accessible by ssh. As a result a compressed
file called azaindole-prodrg.tar, containing the GROMACS ITP
files [180] for all the compounds coming from the CSD query, is
created.

3. GROMACS: This job runs an energy minimization for every struc-
ture made of a box of 1000 water molecules using as input the files
contained in the azaindole-prodrg.tar file. It can be easily tuned
to run a minimization of the compound with a protein structure
(as it is usually performed in protein-ligand complexes studies)
relevant to drug design. All the results are stored in a compressed
file directly downloadable from the portal.

Workflow details

The workflows used are shown in Fig. 3.12 and 3.13 respectively, to-
gether with their definition. Relationships among the various jobs are
expressed using a link (this involves a file transfer in each case) that de-
fines the dependency job chain. In this case the user must set all the job
ports by following the syntax described in Ref. [173] and taking into ac-
count where the job is executed so that the portal could be aware of all
the information needed for file transfers. In the case of the GROMACS
job (to be executed on EGI) the file should pass through the portal
using the local file feature. This is needed to overcome the limitation
present in the P-GRADE File Transfer Management System that does
not allow direct file transfer between different platforms (different Grid
middlewares following the P-GRADE Grid Portal nomenclature). A
modification of P-GRADE could enable the direct file transfer between
a CLUSTER-GRID and different Grid middleware.

Another interesting improvement would be the connection of a sequen-
tial job to an Automatic Generator directly. At present this step needs
to be performed separately by the user. Modifications in P-GRADE
devoted to overcome this limitation are under study.

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

152 3. Simulation Workflows

Figure 3.12: First workflow Schema as it is presented by the P-GRADE Grid
Portal workflow editor. The workflow involves a coordinated execution using
external services, Cluster platforms and Grid infrastructure.

Figure 3.13: Second workflow Schema as it is presented by the P-GRADE
Grid Portal workflow editor. The workflow involves a coordinated execution
using the Grid, a Cluster platform and a user computer.

Computing platform and workflow support

As the portion of the code in P-GRADE devoted to send jobs to the
Grid environment has not been altered, a significant effort has been
devoted to develop a set of scripts (fully integrated into the Portal)
able to manage the submission of jobs to local cluster. To do that
the DRMAA standard library for the job submission and monitoring
to Distributed Resource Management Systems (DRMS) has been used
and the scripts have been compiled and tested on the two Sun Grid

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

3.4. Workflow extensions to Multi-body systems 153

Engine (SGE) platforms present at CESGA: SVGD and Finis Terrae.

The addition of a local cluster in P-GRADE is obtained by defining in
the configuration files of the Portal a new type of Grid and copy it in
the account of each user present in the local cluster the generated SSH
public key as shown in Fig. 3.14. Following this procedure the remote
accounts are exposed to the portal, but not to the other users having
an account on the portal.

Figure 3.14: SSH configuration for Local Cluster

To copy files between local cluster and grid as well as local cluster and
server, a new syntax has been specifically defined into the workflow
editor:

cluster:[host DN—host IP]:[path to file]

and for each job a special folder is created in the local cluster where
the files needed for the job execution are copied. In order to im-
plement such skills on P-GRADE, three scripts have been developed
wkf pre CLUSTER-GRID.sh, wkf post CLUSTER-GRID.sh and
ff CLUSTER-GRID.sh. To manage the input files needed for the calcu-
lations, another script (wkf pre.sh) has been developed and integrated
into the Portal. The script calls specific functions on the local clus-
ter located in the file wkf pre CLUSTER-GRID.sh. At the same
time to manage the output files carried out from the calculations, the
wkf post.sh script has been developed and integrated into the Portal.
The script calls specific functions on the local cluster located in the file
wkf post CLUSTER-GRID.sh. To perform the file management on
different resources and technologies (such gLite, for dealing with the
Grid platform, and SSH, for local cluster) the ff CLUSTER-GRID.sh

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

154 3. Simulation Workflows

has been developed. Each user can request the needed amount of re-
sources belonging to the local cluster for the job execution. Those re-
sources are specified by variables and parsed through an ad-hoc script.
However, since the workflow editor used by P-GRADE is unable to link
different resources, all files need to transit trough the P-Grade Portal
Server (in the future the workflow editor will be modified to overcome
this limitation).

As an example, the architecture diagram showing the pre/post file man-
agement and job submission procedures is presented in Fig. 3.15. In the
same Figure the communication protocols SSH based (SCP/SSHFS)
linked with the specific tasks related with the different functions devel-
oped in the ff CLUSTER-GRID.sh script are also shown.

Figure 3.15: Computational platform architecture mixing HPC and HTC
resources

3.4.5 Added value: a specialized Visualization Tool

As an added value a set of visualization tools has been developed as
portlets and implemented in the P-GRAGE Grid Portal to be deployed
in GEMS.

The use of portlets allows to easily add new tabs and windows associ-
ated with simulation and/or grid file management applications needed
by the user. As P-GRADE is entirely developed using Java, JSP and
GridSphere, these three components were used to develop a specific
portlet for the visualization of the GROMACS output.

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

3.4. Workflow extensions to Multi-body systems 155

For this purpose two code files (written using JSP and Java, respec-
tively [18]) and the corresponding configuration files have been de-
veloped together with a Jakarta Ant script to deploy the portlet in
P-GRADE. At the same time the Jmol package [181] was used as a
specialized visualization tool. Jmol is an open-source Java viewer for
chemical structures which contains a web browser applet (JmolApplet)
that can be integrated into web pages or, as in our case, into a Grid-
Sphere Portlet.

The main class in Jmol Portlet is ‘UiJmol’. That class is a child of ‘Ac-
tionPortlet’ class of GridSphere. The ‘UiJmol’ class calls ‘uiJmol.jsp’,
in which the main layout of the web page is described. The portlet lay-
out consists of a form devoted to choosing the file to visualize, and of
an applet devoted to rendering the molecule. The form was developed
using three boxlists (ListBoxBean class). The first boxlist is used to
choose the workflow, the second to choose the job in the workflow, and
the third to choose the molecule file (output of GROMACS). The port-
let searches for the files only in the current user account of P-GRADE
(since it can not access files in other user’s accounts). In the visualiza-
tion process the HTML code (as wellas the JavaScript code) is used to
call the Jmol applet specifying the location of the output file for the
visualization.

Jmol supports several input file formats, but does not support those of
GROMACS. As a solution for that problem, the pdb2gmx command, in-
tegrated in the GROMACS package, is used to convert the GROMACS
output to Protein Data Bank (PDB) file format [182]. All the described
components are packed together in a single tar file for an easy distri-
bution and the deployment can be done with an ad-hoc Jacarta Ant
script. In Fig. 3.16 a screenshot coming from the visualization Jmol
portlet implemented in COMPCHEM P-GRADE Grid Portal is shown.
Using this portlet the PDB file obtained from the calculations can be
easily visualized. All the functionalities available at the JmolApplet
are also present in the portlet. Even more, Jmol additional functionali-
ties like the RasMol/Chime scripting language and JavaScript support
library can be integrated into a very specific visualization portlet and
there is no need to wait for completion of the whole workflow.

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

156 3. Simulation Workflows

Figure 3.16: Sketch of the Output visualization for the developed multiplat-
form GROMACS workflow.

3.4.6 The DL POLY program

The program overview

A similar investigation was started for the DL POLY [11] because of its
popularity and of its extended usage by the Computational Dynamics
and Kinetics group of University of Perugia. DL POLY is a package of
subroutines, programs and data, designed to facilitate MD simulations
of macromolecules, polymers, ionic systems, solutions and other molec-
ular systems on a distributed memory parallel computer. The package
was written as part of the UK project CCP5 by Bill Smith and Tim
Forester on a grant of the Engineering and Physical Sciences Research
Council and is the property of the Science and Technology Facilities
Council (STFC).

At the time of the investigation, two versions of DL POLY were avail-

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

3.4. Workflow extensions to Multi-body systems 157

able. DL POLY 2, the earlier version, based on a replicated data par-
allelism. It is suitable for simulations of up to 30,000 atoms on up to
100 processors. DL POLY 3 (written by I.T. Todorov and W. Smith)
instead, based on domain decomposition parallel schema and designed
for systems beyond the range of DL POLY 2 - up to 10,000,000 atoms
(and beyond) and 1000 processors.

The Grid implementation of DL POLY

To investigate how Grid-targeted modifications of the distribution strate-
gies would work for DL POLY, it was implemented on the EGI pro-
duction Grid platform available in COMPCHEM.

As a first step, to measure the performance of the code on the Grid and
to single out the Grid features exploitable for the purpose of improving
the statistics of the selected events, we ran the parallel version of the
DL POLY suite of codes, based on the Replicated Data parallelization
strategy [183] on six different EGI-Grid clusters of processors. In order
to evaluate the elapsed time of each simulation and the related speed-
up for each cluster, we ran the calculations sequentially on one node
and in parallel on 2 and 4 nodes.

As a second step, the parallelization of DL POLY has been carried
out at coarse granularity, by adopting a task farm model. In this sim-
ple model, a master process distributes the whole program to all the
available Grid nodes and executes it in parallel for different values of
the parameters, in a typical SPMD (Single Program Multiple Data)
fashion. In particular, we distributed different calculations for various
temperatures. This model has the advantage of being simple to im-
plement and to be, in some way, the one most suited for the present
structure of the EGI Grid.

Related calculated elapsed times and speedups measured on different
EGI Grid clusters are plotted in Fig. 3.17 and 3.18 respectively. As
shown by the figures some clusters on the EGI-Grid have a parallel
performance very close to the ideal value because they allow a dedi-
cated usage of the processors. Deviations from the ideal value do not
necessarily depend only on the time sharing regime adopted by some
clusters. To investigate this aspect a detailed evaluation of the par-
allel performances of the clusters and of the waiting time intercurring
between the scheduling and the running of a process were obtained by
restricting parallel calculations to two nodes. The results obtained by

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

158 3. Simulation Workflows

running 50 parallel jobs showed that more than 70% of the jobs ran
properly and only 26% were aborted. The main reason for abortion was
found in communication errors between the nodes of the same cluster
(62%). About 15% of the failures were due to faults of the scheduler
and another 23% to internal errors of DL POLY at run time.

Figure 3.17: Elapsed time measured on different EGI-Grid clusters plotted
as a function of the number of processors used (see online version for colours)

Figure 3.18: Speed-ups measured on different EGI-Grid clusters plotted as a
function of the number of processors used (see online version for colours)

Indications for an alternative distribution scheme

The non-negligible failure rate of the calculations due to internal DL POLY
problems (and not to networking problems) prompted the need for de-

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

3.4. Workflow extensions to Multi-body systems 159

veloping alternative distribution strategies. This has motivated specific
work on the DL POLY package itself.

In fact, whereas failures due to either communication or scheduling
reasons can be remedied by re-running the related computation, while
waiting for the Grid to become more fault-tolerant, internal DL POLY
failures imply that one or more starting conditions are inappropriate
and make it difficult to properly sample initial conditions. To deal
with this problem we examine in the followings the algorithms used for
increasing the statistical significance of the sample after the thermal-
ization process.
As is well known, the average value < A > of property A of a given
system of N particles is defined as

< A >=

� �
dpNdrNA(pN , rN)ρ(pN , rN) (3.16)

where A(pN , rN) is the property A expressed as a function of the phase
space variables pN and rN while ρ(pN , rN) is the probability density of
the ensemble. Usually, as already mentioned, in Molecular Dynamics
simulations < A > is approximated in the ergodic approach by the
time average < A >time defined as

< A >time= lim
t→∞

1

t

�
A(pN(t), rN(t))dt � N−1

τ

N�

t=1

A(pN(t), rN(t))

where Nτ is the number of sampling points considered. Accordingly,
after partitioning the integral in Nk subsets we can also write

< A >= N−1
k

Nk�

k=1

< A >k= N−1
k

Nk�

k=1

N−1
τk

Nτk�

t=1

A(pN(t), rN(t))

This leaves us with the choice of selecting appropriate configurations of
the system that can be obtained by randomly altering the after ther-
malization configurations having the same energy. In our approach we
randomly invert the sign of a fixed number of momentum components
of the particles of the system without changing their modulus. As a
result, the portion of the phase space sampled by the system changes
slightly without altering the global and individual total energy of the
particles.

To implement our selection algorithm, new MPI constructs have been
added to the original code. Use has also been made of the preprocessor

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

160 3. Simulation Workflows

instructions to avoid the compilation of the original MPI implementa-
tion of the DL POLY package as described in [184] and modifications
have been introduced in the workflow, merging the distribution strate-
gies previous described in section 3 and 4. Further extended tests are
being carried out to better evaluate the performances of the proposed
approach.

3.5 Moving to a High Performance Grid

The implementation of real systems on the Grid require often to go
beyond the present structure of the Grid platform. As a case study we
considered the rationalization of gas hydrates formation. Gas hydrates
are ice-like solid inclusion compounds which result from the trapping of
gas molecules within a lattice-like cage of water molecules. Many gases
have molecular sizes suited to form hydrates like methane (CH4) and
carbon dioxide (CO2). Gas hydrates are essentially water clathrates in
which the water cage cristallizes in the isometric cristallografic system
rather than in the hexagonal one of normal ice [185]. Actually, the
cage of water molecules (host) is stabilized by the trapped gas molecule
(guest) and, without such contribution, the lattice structure of hydrate
clathrates would collapse into a conventional ice crystal structure or
liquid water.

Clathrates became famous some time ago because of their ability to
obstruct natural gas pipelines [186]. Light gases, such as methane or
ethane, always present in oil products can, in fact, at low temperature
and high pressure, get trapped as guest molecules in hydrate structures
and make them solidify [187]. However, important benefits can be de-
rived from the exploitation of this property. For instance, at standard
conditions of pressure and temperature, one volume of methane hy-
drate can store up to 164 volumes of gaseous methane [187], allowing
its safer and less expensive storage and transportation. Because of this,
methane hydrates can be considered the most abundant carbon-based
energy source on Earth [188,189] (conservatively estimated to amount
to about twice the quantity of carbon in all known fossil fuels). this
makes the sedimentary methane hydrate reservoirs a potentially im-
portant source of hydrocarbon fuels. Moreover, the lower stability of
the CH4 clathrate with respect to that of CO2 has suggested the use
of extraction of methane from clathrates together with the adoption of
carbon dioxide mitigation techniques based on the sequestering of CO2

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

3.5. Moving to a High Performance Grid 161

in hydrates [190, 191].

The mechanisms of formation of a gas hydrate involves typically the
following steps: gas dissolution, formation of crystallographic nuclei
and their growth. The bottle neck for such mechanism is the forma-
tion of the solvent cage that needs long induction time and has a low
rate [192]. On the theoretical side, the determination of the steps of
such mechanism and of the structure of the water cages formed by the
host molecules (which involve non covalent forces [190, 193]) prompts
an accurate description of the interaction and a rationalization of the
aggregation forms of the solvent in the presence of the guest gas. On
its side the experiment has already indicated that the formation of the
solvent cage depends on the interfacial area, pressure, temperature as
well as on the extent of supercooling [194]. The experiment has also
singled out that, after a certain induction time, the structure of gas
hydrates grows mainly at the water-gas interface [188] with the rate
of formation of the clathrate being controlled by the gas diffusion rate
through the hydrate film.

The gas diffusion is enhanced by some additives, like the surfactants
(surf ace act ive agents), whose molecules have lipophilic and hydrophilic
moieties (amphiphilic molecules). This property has been rationalized
in terms of a reduction of the surface tension at gas-water interface
by the surfactant that facilitates the gas diffusion into water [195]. To
this end, Zhang et al. [196], when investigating the behaviour of sodium
dodecyl sulfate (SDS) solutions, suggested that SDS molecules adsorb
on hydrate nuclei and reduce the energy barrier for further aggrega-
tion. This was rationalized, at least in a certain concentration range,
in terms of a tendency of the surfactant molecules to form micelles
which can act as effective sites for hydrate nucleation [197]. Yet, a few
years later, thanks to the analysis of the Critical Micelle Concentration
(CMC) of several surfactants, it was suggested [198] that no micelles in-
tervene during the formation of the gas hydrate. To put that finding on
a robust theoretical ground we started extended calculations aimed at
modeling the mechanism of formation of gas hydrates when surfactants
are added to the water-gas system [199–202]. To this end, a recently
developed model potential (see for instance Refs. [203–210]), based on
the decomposition of the molecular polarizability into effective com-
ponents and using a new formulation of non-covalent interactions, has
been utilized to build an appropriate Potential Energy Surface (PES).
Such PES has been used to carry out Molecular Dynamics (MD) simu-
lations for systems containing SDS-CH4, SDS-H2O and CH4-H2O pairs

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

162 3. Simulation Workflows

by running the DL−POLY [11] package. The package was implemented
making use of the cluster of the Departamento de Quimica Fisica at the
University of Barcelona and on the EGI Grid Infrastructure available
to the virtual organization (VO) COMPCHEM [6].

The present study concerns the investigation of a system made of one
molecule of SDS and one molecule of CH4 in an environment of 2000
water molecules. The study showed that, even in extremely diluted
cases in which the formation of micelles is impossible, SDS is able to
organize water molecules in a way that the methane molecule is driven
(and then dropped) inside their cage. In spite of the fact that such
molecular composition corresponds to a concentration of SDS in water
larger than the critical micelle concentration, it ensures the absence of
micelles. Accordingly, the possible formation of ordered clathrate type
structures can be attributed only to the capability of SDS to organize
water molecules in such a way that, as already mentioned, the methane
molecule is driven and then dropped inside the water cage.

3.5.1 Potential Energy Surface

As usual in our studies [209–212], the assemblage of the PES is the
first heavy test of GEMS. For large system, the potential is formulated
as a sum of intermolecular (Vinter) and intramoleclar (Vintra) empirical
terms calibrated using experimental information and extended ab initio
calculations.

To this end Vinter is further decomposed into non electrostatic (Vnelec)
and electrostatic (Velec) terms, which are assumed to be independent.
Vnelec is then expressed in terms of pair interactions between individ-
ual atoms or groups of atoms, having a given effective polarizability.
Both water and methane have small molecular polarizabilities com-
pared with that of SDS. For this reason, no decomposition was at-
tempted for both of them and single interaction centers, placed on the
O and on the C atoms (marked as Ow and Cm) of H2O and CH4,
respectively, were considered (the successful use of a single interaction
center for H2O [213–218], and CH4 [202], is already documented in
the literature). For the molecular polarizability of the SDS molecule
(CH3-(CH2)11-SO4Na), instead, a decomposition in effective polariz-
ability values associated with the CH3-, CH2-, (-SO4)− and Na+ groups
(whose interaction centers are labelled as C3, C2, SO and Na and as-
sumed to be placed on the C, S and Na atoms, respectively) was made.

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

3.5. Moving to a High Performance Grid 163

This decomposition was applied to the description of both Vintra and
Vinter for SDS-CH4. On the contrary, the effective polarizabilities asso-
ciated with the individual atoms of the (-SO4)− group were considered
to describe the SDS-H2O interaction to the end of avoiding the col-
lapse caused by the electrostatic attraction when considering two point
charges.

Pair interactions acting between centers having an effective polarizabil-
ity and describing the base components of Vinter and Vintra are formu-
lated in terms of an Improved Lennard Jones (ILJ) function (see for
instance Refs. [216]) as follows:

VILJ = ε

�
c1
�r0
r

�β+4.0
�

r
r0

�2

− c2
�r0
r

�m
�

(3.17)

with
c1 =

m

β + 4.0
�

r
r0

�2
−m

c2 =
β + 4.0

�
r
r0

�2

β + 4.0
�

r
r0

�2
−m

(3.18)

Eq. 3.17 contains four parameters two of which, ε and r0 (also used
in the traditional Lennard Jones (LJ) function), are the well depth
and the equilibrium distance (i.e. the point at VILJ = −ε) of each
interaction pair, respectively. They have a specific physical meaning
and are transferable among different systems [207,208,216,218] ensuring
that all partners are equally well described at both intramolecular and
intermolecular level. The third parameter, β, defining the falloff of the
repulsion and the relative strength of repulsion and attraction, can be
varied depending of the nature of the environment and, therefore, is
not completely transferable. The fourth parameter, m, depends on the
nature of the attraction and, as usual, m=6 was chosen in the case of
a dominant dispersion attraction contribution, while m=4 was chosen
when the ion-induced dipole attraction dominates the dispersion one.

The values of the parameters, obtained from the effective polarizability
for the considered groups are given in Table 3.4. The Ow-Ow pair
parameters and the associated electrostatic contributions used in the
present study are those previously tested in the investigation of liquid
water (made of non rigid H2O molecules) [216], while the Ow-Na+ ones

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

164 3. Simulation Workflows

are the same as those already used in the study of the water solvation
of M+ ions (M=Na,K,Rb) and of M+-Benzene dimers [214].

In the methane molecule C and H atoms, because of their shared elec-
tron pairs, have similar electronegativity. Moreover, the high symmetry
of CH4 and the absence of permanent dipole and quadrupole moments
prompts the use of a null effective charge on each atom [219]. Accord-
ingly, the electrostatic energy contribution is calculated only from the
charge distribution of SDS and water molecules. The monomer geom-
etry and the charge distribution of water are the ones used before to
investigate flexible molecules [216], and correspond to a dipole moment
equal to 2.4 D. For SDS the same charge distribution adopted for the
MD simulations of micelles formation in water [220], is used.

Then, the CH4-H2O interaction (VCH4−H2O) is formulated using a single
pair interaction between the two effective centers Ow and Cm while
SDS-CH4 interaction (VSDS−CH4) is formulated as,

VSDS−CH4 = VCH4−CH3+
11�

i=1

VCH4−(CH2)i+VCH4−SO4+VCH4−Na. (3.19)

On the contrary, the SDS-H2O interaction is formulated using a dif-
ferent decomposition of the molecular polarizability and including the
strong electrostatic effects as follows,

VSDS−H2O = VH2O−CH3 +
11�

i=1

VH2O−(CH2)i +
4�

i=1

VH2O−(O)i

+VH2O−S + VH2O−Na + Velec

(3.20)

where Velec is calculated from the previously mentioned charge distri-
butions of SDS and water.

As to Vintra, that of the H2O molecule is taken from Ref. [216] while
that of the SDS molecule, is formulated as a sum of the covalent bond
(Vbnd), the angle (Vang) and the dihedral (Vdih) interaction terms plus
the non-covalent contributions. For the Vbnd and Vang description the
parameters are taken from the AMBER Intramolecular Generalized
Force Field [221], while for Vdih those of Ref. [220] are adopted. The
remaining non-covalent contribution are calculated by adopting the ILJ
function and the same decomposition of the SDS polarizability used to
describe the SDS-CH4 intermolecular interaction. The pairs considered
are CH3-CH2, CH2-CH2, CH3-SO4, CH2-SO4, CH3-Na, CH2-Na and
SO4-Na whose related values of the related ILJ function parameters
are given in Table 3.4.

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

3.5. Moving to a High Performance Grid 165

Table 3.4: The values of ε (well depth), r0 (equilibrium distance), β and m
parameters used to define the pair interactions in eqs. 1 and 2.
Interaction partners ε / meV r0/ Å β m
C2-C2 10.86 3.886 8 6
C2-C3 11.70 3.919 8 6
C2-SO 20.69 4.422 8 6
C3-SO 22.91 4.440 8 6
C3-Ow 10.56 3.850 8 6
C2-Ow 9.85 3.814 8 6
S-Ow 6.96 3.946 8 6
O-Ow 6.96 3.946 8 6
C3-Na+ 2.86 3.595 8 6
C2-Na+ 2.76 3.538 8 6
S-Na+ 1.75 3.742 8 6
O-Na+ 1.75 3.742 8 6
Ow-Na+ 151.89 2.732 6.5 4
Ow-Ow 9.06 3.730 7.5 6
Cm-Na+ 2.91 3.676 8 6
Cm-C3 13.73 3.999 8 6
Cm-C2 12.67 3.968 8 6
Cm-SO 25.75 4.467 8 6
Cm-Ow 13.18 3.868 8 6
Cm-Cm 14.98 4.040 8 6

3.5.2 From dimers to solvation spheres simulations

In order to analyze the validity of the proposed interaction we car-
ried out, first, MD simulations for the separate SDS-CH4, SDS-H2O
and CH4-H2O systems using the DL−POLY program [11]. Following
the same procedure of Ref. [207,218] (which involves the evaluation of
the interaction energy associated with various geometries of the dimer
and the extrapolation of the results at low temperature (0 K)), the
equilibrium-like structures for both the SDS-CH4 and SDS-H2O sys-
tems were determined. Then the obtained equilibrium-like structure of
SDS-CH4 was solvated by merely surrounding them by water molecules.
Such solvated SDS-CH4 configuration was taken as the initial one for
MD simulations of the SDS-CH4-(H2O)n system. This ensures that the
calculations do not start from initial structures biased to the formation
of clathrate cages. In this way, a comparison of the CH4-(H2O)n and
the SDS-CH4-(H2O)n MD calculations allows an analysis of the role

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

166 3. Simulation Workflows

played by SDS in promoting the formation of methane hydrates.

The first batches of such calculations were devoted to the SDS-H2O and
to the SDS-CH4 dimers and were performed by considering the micro-
canonical ensemble of particles (NVE), from which the equilibrium-like
structures were determined from radial and angular distribution func-
tions calculated at low temperature [202]. A time step of 1 fs and
a cut-off radius of 9 Å, were adopted to keep the variation of total
energy (Etotal) smaller than 10−5 meV for all the simulations. After
equilibration, during which the system tends to reach the most stable
configurations, the MD trajectories for the SDS-H2O and SDS-CH4 sys-
tems were integrated by conserving Etotal to allow a statistical analysis.
At low temperature the mean configuration energy (Ecfg) is close to
the equilibrium one.

The MD simulations of the SDS-CH4 dimer were started from the four
limiting initial configurations shown in Figure 3.19. All the simulations
carried out at low temperature led, after 0.1 ns of equilibration and an
additional 1 ns of simulation, to a configuration having the sulfate head
closely located near the methane molecule (see Figure 3.20). Such con-
figuration is easily reached during the equilibration period and becomes,
therefore, the geometry of election for starting subsequent simulations.
The system, in fact, once equilibrated at the desired temperature, can
explore for a sufficient long time those regions of the phase space com-
patible with the corresponding value of Etotal (and therefore of T).

As a matter of fact, by carrying out a low temperature analysis of the
associated distances and angles distributions, it was possible to locate
the geometries at which the potential energy has a minimum (for the
sake of clarity we note here that we take as equilibrium-like geometry
that of T=5 K, the lowest studied temperature). The results of the sim-
ulation coincide with distances and angle distributions associated with
the preferred geometry of the dimer (see Figure 3.21 where the upper
panel shows the Radial Distribution Histogram (RDH) of methane with
respect to the S atom while the lower panel shows the corresponding S-
Na-CH4 Angular Distribution Histogram (ADH)). They indicate that
the distribution of the S-CH4 distance values peak at about 4.63 Å and
that of the S-Na-CH4 angles peaks around of 71.14 ◦.

The result of the similar investigation performed for the SDS-H2O
dimer (using again NVE statistical ensemble of atoms) are shown in
Figure 3.22 (upper panel: the RDH of water with respect to the S
atom; lower panel: the corresponding ADH for S-Na-H2O). The calcu-

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

3.5. Moving to a High Performance Grid 167

Figure 3.19: The four different initial configurations of the SDS-CH4 system
considered.

Figure 3.20: SDS-CH4 equilibrium like structure obtained at T=5 K.

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

168 3. Simulation Workflows

Figure 3.21: S-Cm (top panel) radial distribution histogram and S-Na-Cm
(bottom panel) angular distribution histogram obtained at T= 5 K.

lations suggest that the Ow atom of the water molecule is preferentially
located about 3.76 Å far from the S atom and forms an angle of 92.70 ◦

with Na+.

Additional simulations were performed for both the SDS-(H2O)n and
the CH4-(H2O)n systems for an increasing number n of non ordered
configurations of water molecules using the same conditions adopted
for the previous NVE simulations in order to evaluate the amount of
energy exchanged associated during the solvation process of SDS and
CH4. In particular, the Radial Distribution Functions (RDF) g(r) [222]
(g(r) = V

N2 �
�

i �=j δ (r+ ri − rj)� where ri, rj are the positions in the ith
and jth molecules, respectively, �. . . � denotes a thermal average, δ is
the Dirac delta function, N is the number of atoms considered and V is

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

3.5. Moving to a High Performance Grid 169

Figure 3.22: S-Ow (top panel) radial distribution histogram and S-Na-Ow
(bottom panel) angular distribution histogram obtained at T=5 K.

the volume of the system) of the oxygen atoms of the water molecules
with respect both to the sulfur atom and to the C atom for the SDS-
(H2O)n and the CH4-(H2O)n systems, respectively, were calculated.

The configuration energy per water molecule (Ecfg/n(H2O)) and the
preferred radius of the first solvation shell (ISr), derived from the cor-
responding g(r) functions, are reported in Tables 3.5 and 3.6 for the
CH4-(H2O)n and the SDS-(H2O)n systems, respectively, for increasing
values of n. This provides us with some indications about the solvation
energy and the radious (ISr) of the first solvation sphere calculated as
the radius (r) associated to the maximum value of g(r).

As the minimum cavity structure able to encapsulate a methane molecule
is the 512 one (defined as a pentagonal dodecahedron cage) formed by

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

170 3. Simulation Workflows

Table 3.5: Ecfg/n(H2O) and first solvation shell preferred radius for different
numbers of water molecules solvating CH4.

n Ecfg/n(H2O) ISr
(eV) (Å)

32 -0.4683 4.05
69 -0.4706 3.88
168 -0.4645 3.78

Table 3.6: Ecfg/n(H2O) and first solvation shell preferred radius for different
numbers of water molecules solvating SDS.

n Ecfg/n(H2O) ISr
(eV) (Å)

30 -0.7531 3.86
63 -0.6156 3.56
170 -0.4749 4.03

20 molecules of water, a minimum of 60 molecules are required to carry
out the analysis of the formation of a crystal of methane hydrate (Cu-
bic I). Accordingly, the comparison of the properties of water ensembles
containing less than 60 molecules for CH4-(H2O)n with those of the en-
sembles containing more than 60 molecules gives information about the
ability of methane to form structured hydrates as the number of water
molecules increases. MD results for the CH4-(H2O)n system do not
show any tendencey to form ordered geometries when the number of
water molecules increases even if for larger numbers of water molecules
the first peak of the radial distribution function moves to lower dis-
tances (see Table 3.5). As a matter of fact, it has been observed (see
Table 3.5) that the value of Ecfg/n(H2O) is almost independent of n.
On the contrary, as it can be seen in Table 3.6, an increase of the num-
ber of water molecules for the SDS-(H2O)n system leads to an increase
(less negative value) for Ecfg/n(H2O), in agreement with the results of
Ref. [223] for SDS-water bulk.

To complete the picture the characteristics of the SDS-CH4-(H2O)n
system have been also investigated by considering ensembles of 64 and
168 water molecules. As apparent from the results given in Table 3.7,

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

3.5. Moving to a High Performance Grid 171

Table 3.7: Ecfg/n(H2O) and first solvation shell preferred radius for different
numbers of water molecules solvating CH4.

n Ecfg/n(H2O) ISr
(eV) (Å)

64 -0.6011 3.56
168 -0.5564 3.78

in which the Ecfg/n(H2O) and ISr (referred to the preferred distances
between the O atom of water and the C atom of methane) are given, an
increase of the number of water molecules surrounding the SDS-CH4

dimer leads to an increase of the configuration energy of the system
and, at the same time, to an increase of the size of the first solvation
shell of CH4. From a comparison of the results given in Tables 3.5 and
3.7, it can be concluded that the position of the first solvation peak is
independent of the SDS molecule when the number of water molecules
increases.

3.5.3 The clathrate formation simulation

On the Ground of the pieces of information collected from the sim-
ulations discussed above, we carried out realistic MD simulations of
single SDS and CH4 surrounded by an ensemble of non rigid [216] 2000
water molecules under the experimental conditions of temperature and
pressure in order to investigate the role played by SDS in the clathrate
formation. The simulations were also performed by considering a NpT
ensemble of particles (adopting for it cubic boundary conditions) using
the same time step and cut-off as in the NVE calculations reported in
the previous subsection.

The SDS-CH4 equilibrium-like geometry (discussed in the previous sub-
section) was taken as the initial configuration and was solvated using
a non ordered ensemble of 2000 water molecules (see Figure 3.23), so
as not to favor, as mentioned before, initially solvated CH4 structures.
In order to mimic the experimental conditions of the system near the
methane hydrates formation point, a volume of 40 Å3 was chosen and
a temperature T= 275 K and a pressure p=8 MPa were adopted. For
comparative purposes, similar calculations were performed for a CH4

molecule immersed in the same pure water bulk at the same tempera-

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

172 3. Simulation Workflows

Figure 3.23: Sketch of the SDS-CH4 equilibrium like structure, obtained at
T= 5 K, solvated by an ensemble of 170 water molecules.

ture and pressure conditions (a time step of 1 fs and an equilibration
time of 40 ps were used in all the simulations). The MD trajectories
were integrated for 2 ns and statistical analyses were performed exclud-
ing the equilibration period. Each simulation was performed using a
partial integration time of 0.2 ns and a set of continuation runs starting
from the final configuration, velocities and forces of the end point of
the previous one till reaching the total integration time of 2 ns were
launched. Such strategy enabled us to keep under control the dynamic
evolution of the studied systems. The calculated densities of the SDS-
CH4 and CH4 systems in water are 0.9705 g cm−3 and 0.9751 g cm−3,
respectively.

The analysis of the results obtained from the MD simulation of the
SDS-CH4 system in water pointed out how the folding of a single SDS
molecule is able to orient the water molecules to surround CH4 in a kind
of an open cage (see in a sequence the a, b and c screen shots of Figure
3.24 for more details). As apparent from the figure, in fact, the CH4

slips out of its preferred position near the sulphate (illustrated in Figure
3.20) to end up to be basketed into the water open cage subtended by
the SDS (see panel a of Figure 3.24). Once the process is completed,
the SDS moves away (see b and c panels of Figure 3.24) and becomes
available for replicating the process with other methane molecules. Also
in this case, in order to obtain further detailed information on the

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

3.5. Moving to a High Performance Grid 173

Figure 3.24: Screen shots of folding of the SDS-CH4 in water taken after a
0.2 ns MD simulation using the NpT ensemble.

Table 3.8: Radius and coordination number for methane in the first solvation
shell. The MD results, obtained in presence of SDS, are compared with
experimental results of Soper et al. [224]

System MD Exp. [224]
ISr (Å) NCH4 ISr (Å) NCH4

CH4-H2O 3.6 16±1 3.5 16±1
CH4-H2O (Hydrate) 3.8 18±1 4.0 21±1

nature of the solvation processes of the methane molecule by a water
bulk we calculated for both systems the Cm-OW Radial Distribution
Function g(r).

The RDFs (see Figure 3.25) show that the peak indicating the first
solvation shell of Methane (ISr) shifts from 3.62 Å to 3.77 Å in going
from CH4-H2O to SDS-CH4-H2O complex system. This shift indicates
a modification of the CH4 solvation shell in presence of SDS. Starting
from the ISrs of Methane in the two systems, the respective coordi-
nation number (NCH4) in water has been calculated. A comparison of
the values calculated for the two systems is given in Table 3.8 where
experimental data are also quoted.

As pointed out by the Table, the calculated values well agree with the
experimental ones of Soper et al. [224] obtained using neutron diffrac-

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

174 3. Simulation Workflows

Figure 3.25: A comparison between the Cm-Ow Radial Distribution Func-
tions of the SDS-CH4-H2O and the CH4-H2O systems. It can be noticed the
first peak shifts from 3.62 Å to 3.77 Å.

tion techniques. In such experiments it has been investigated the water
ordering around methane during hydrate formation, observing that the
hydration sphere around methane in the liquid, changes significantly
only once hydrate is formed. In spite of the different conditions used in
Ref. [224] with respect to our simulations, the comparison appears to
be meaningful, supporting the MD finding of an incompletely formed
clathrate structure 512 clearly singled out by Figure 3.26. In that fig-
ure half of the 12 pentagons (for a total of 18 molecules forming the
structure 512 of the clathrate) are easily detectable with no micelles
formation.

3.5.4 HiPEG: the HIgh PErformance Grid

The exploitation of the advantage of using a PES based on an im-
proved formulation of intra- and inter- molecular interaction, utilizing
the decomposition of the molecular polarizability, while allowing the
building of a road map suited to verify whether or not the formation
of micelles hits its limit when tackling realistic treatments of natural
systems composed by many particles (atoms and molecules). When
considering the present composition of the Grid platform, in fact, one
immediately realizes that the size of memory provided and the level of
peack velocity offered are insufficient, for example, to extend the use
of the quantum techniques to the highest level of theory.

However, the goal of making the packages implementing such tech-

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

3.5. Moving to a High Performance Grid 175

Figure 3.26: Sketch of the solvation sphere of methane at the end of the
simulation. From the figure half of the structure 512 of clathrates can be
identified.

niques efficient user tools has driven the members of COMPCHEM
to foster the evolution of the Grid along the direction of combining a
proper usage of High Throughput Computing (HTC) and High Perfor-
mance Computing (HPC) resources (of both the Super Computer or
cluster type based on high speed dedicated networks) for which insuf-
ficient effort has been spent up to date to the end of achieving an easy
and efficient execution across different computing platforms.

This has motivated, for example, the assemblage of a tool bridging the
gap between theHTC and HPC platforms and making the applications
interoperate. As a test case CINECA [65] (for HPC) and IGI [84],
the Italian Grid Infrastructure (for HTC) have been considered for the
interoperable implementation of two applications of the COMPCHEM
Virtual Organization (VO) of EGI.

Unfortunately, HPC and HTC infrastructures have developed sepa-
rately (and sometimes even conflictingly). Related strategies are based
in fact on different views of concurrent computing and rely on different
types of Middleware. As a matter of fact, they also target two dif-
ferent classes of applications, numerical algorithms and computational
approaches. Yet, as previously discussed, on the researchers side a con-
traposition of HPC and HTC is not what is needed. In many scientific
fields researchers need, instead, platforms combining HPC and HTC
enabling the accurate modeling of real-like systems as well as virtual

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

176 3. Simulation Workflows

reality simulations based on multi-scale and multi-physics approaches.

To go beyond the present situation we considered as a case study two
HTPC skeletons which combine in an iterative fashion an HPC and
an HTC computing task. These HTPC s keletons are, indeed, typical
of several Computational Chemistry applications of the COMPCHEM
VO. However, they are of much more general validity since their ingre-
dients constitute the basic components of many of the presently used
computational applications developed not only in Chemistry and Ma-
terials Sciences but also in several other disciplines. The two HTPC
skeletons are described in some detail below and illustrated by the next
two figures.

The first skeleton (HTPC1) is based on a scheme that distributes a
large quantity of independent tasks on a HTC platform whose outcomes
are passed as input to a strongly coupled treatment implemented on a
HPC platform (see Figure 3.27). As shown by the figure, in the first
section of the HTPC1 skeleton (that is of the HTC type) an emitter
(triangle) generates a (large) number of independent events (circles)
each of which provides the input for a HPC highly coupled calculation
(square). The outcomes of the distributed HPC tasks are returned
(lower layer of arrows) and gathered together by a collector (inverted
triangle). In case the information collected is insufficient the sequence
is further iterated a certain number of times.

The second skeleton (HTPC2) is based on a scheme that performs a
strongly coupled treatment implemented on a HPC platform followed
by the distribution of a large quantity of independent tasks to be cal-
culated on a HPC platform (see Figure 3.28). Also in this case the
sequence of the two sections is checked against convergence and fur-
ther iterations are performed (with the associated switch between the
two platforms) until either convergence or a maximum number of iter-
ations has been reached.

The systematic construction of Potential Energy Surfaces (and related
properties) for complex molecular systems [225] is a typical example of
an HTPC1 prototype application. Given its importance in the large
majority of chemical problems as an example attaining to this com-
putational scheme, we shall study also the feasibility of constructing a
full dimensional PES for a generic molecular system with the purpose
of characterizing its main features. In this case, one has to evaluate
using a high level ab initio package the potential energy value for a
large number of molecular geometries on a HTC platform and then

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

3.5. Moving to a High Performance Grid 177

Figure 3.27: Skeleton HTPC1: a HPC computation following a HTC one

from a point representation of the PES the features of the overall in-
teraction (and eventually related molecular properties) are calculated
on a HPC platform. Convergence is sought by increasing the number
of geometries for which ab initio points are performed.

Suitable examples of the HTPC2 skeleton are the problems amenable
to: Calculating kinetic coefficients by quantum mechanical flux corre-
lation functions [226]. As an example attaining to the HTPC2 skeleton
we shall explore the case of the calculation of rate coefficients for poly-
atomic systems by means of flux correlation functions and the MCTDH
scheme. In this case, an optimized basis set of multidimensional wave-
functions needs to be generated on a first stage by diagonalizing the
full thermal Flux matrix on an HPC platform. Then in the second
stage each solution wavefunction is distributed on the Grid for an in-
dependent HTC propagation in time. Convergence is checked against
the number of multidimensional thermal flux eigenfunctions included
in the calculation [225].

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

178 3. Simulation Workflows

Figure 3.28: Skeleton HTPC2: a HPC computation following a HTC one

3.5.5 Evolution of the work

The main goal of this work is the design and the development of an
effective solution of the COMPCHEM problem of combining the use of
a Grid infrastructure with a large scale one so as to provide users with
both HPC and HTC computing environments. Indeed, the assemblage
of the computational skeletons of the two large families of CC appli-
cations is a key component of the research activities of the present
work and the construction of the associated computational packages
will incorporate the fundamental procedures which are building blocks
of most of the complex workflows of e-Science applications. At the
same time, however, despite the fact that the research activities are
driven by the demands of the CC community, their central design prin-
ciple will consist in keeping the Workflow Engine (WfE) as general
purpose as possible, in such a way to accommodate for a wide range

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

3.5. Moving to a High Performance Grid 179

of present and future needs. In doing so, attention will be placed at
the definition of a well-suited formalism for process description, which
is basically what will be passed as input to the WfE. Another design
principle will be the neutrality towards the underlying infrastructure
for task execution and data handling, to allow for interoperability with
such heterogeneous computing paradigms as the two that this proposal
addresses. A layered architecture is foreseen in such a way to abstract
from both the Virtual Organization and the infrastructure frameworks,
which stand at opposite ends in the proposed scenario, like in the Fig-
ure 3.29. Proceeding bottom-up, at the very bottom lies the fabric
level, i.e. an unorganized collection of heterogeneous computing and
storage resources which are managed by some Local Resource Man-
agement Systems (LRMS)s. These resources can be abstracted, within
the scope of a single infrastructure by a Grid middleware layer which
sits on the LRMS layer providing consistent and homogeneous access
to them. Since two different and specific Computing paradigms must
be taken into account, an overall Grid Abstraction Layer (GAL) needs
to be defined in order to abstract high level functionality such as job
submission, data transfer, information retrieval, job tracking & moni-
toring, etcetera.

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

180 3. Simulation Workflows

Figure 3.29: The proposed layered architecture

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

Conclusions

The present thesis is based on the research work developed to inves-
tigate the implementation, in a high-throughput computing setting,
of a high level of theory simulator dealing not only with Quantum
Chemistry approaches but also with quantum mechanics and classi-
cal dynamics calculations grafted in a developing for suitable work-
flows. This was tackled using the computational infrastructure of the
EGI Production Grid that support the activities of the Virtual Orga-
nization COMPCHEM devoted to deploy and support Computational
Chemistry applications.

The research activity has developed by focusing on

- the modeling of complex systems and the design of related simu-
lations,

- the evolution of computer architectures and their impact on elab-
oration efficiency,

- the organization of computer collaborative environments and tools.

The use cases considered refer to three different class of execution mod-
els as follows:

- A Grid execution model for quantum mechanics applications in-
volving three bodies;

- An extension of Grid calculations to Multi-body systems using
classical dynamics techniques;

- Implementation of the HIgh Performance Grid extending the real-
istic treatment of natural systems from few atoms to many body
cases enhancing the use of quantum techniques.

In the first execution model the GFIT3C code (a routine performing
the global fitting of the potential energy surfaces in triatomic systems)

181

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

182 Conclusions

and ABC application (a quantum mechanical atom-diatom reactive
scattering program) have been ported in the EGI Grid Infrastructure
and an automatic procedure (workflow) has been developed and tested
for them. To achieve this, the use of the CG3Pie high throughput
framework allowed us to define event-related dependencies between dif-
ferent applications and execute them simultaneously on a large-scale
distributed computing infrastructure.

In the second execution model two codes implementing classical dy-
namics techniques applied to many body systems have been investi-
gated (GROMACS and DL POLY) and has been developed for them a
set of improved distributed workflows (and related visualization tools)
allowing the synergic use of different platforms and the development of
better Grid tools.

In the third execution model indications for further development of
grid resources are presented and in particular the design and the de-
velopment of an effective execution model combining an intelligent and
interoperable use of the Grid infrastructure with a large scale one so
as to provide users with both HPC and HTC computing environments.
To do so, a case study of two HTPC skeletons, which combine in an
iterative fashion an HPC and an HTC computing task, have been pre-
sented.

In support of the validity of the work performed in this thesis, an
application of Grid calculations to a real MD study has been presented
and the results carried out related to the formation of methane hydrates
in sodium dodecyl-sulphate water solutions have been described and
analyzed.

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

Bibliography

[1] J. Yu and R. Buyya, “A taxonomy of scientific workflow systems
for grid computing,” SIGMOD Rec., vol. 34(3), pp. 44–49, 2005.

[2] E. Deelman, D. Gannon, M. Shields, and I. Taylor, “Workflows
and e-science: An overview of workflow system features and
capabilities,” Future Generation Computer Systems, vol. 25(5),
pp. 528 – 540, 2009.

[3] T. Hey, S. Tansley, and K. Tolle, “The Fourth Paradigm: Data-
Intensive Scientific Discovery,” Microsoft Research, 2009.

[4] “European Grid Infrastructure.” http://www.egi.eu.

[5] O. Gervasi, S. Crocchianti, L. Pacifici, D. Skouteris, and A. La-
ganà, “Towards the Grid design of the Dynamics engine of a
molecular simulator,” Lecture Series in Computer and Computa-
tional Science, vol. 7, pp. 1425–1428, 2006.

[6] A. Laganà, A. Riganelli, and O. Gervasi, “On the Structuring
of the Computational Chemistry Virtual Organization COM-
PCHEM,” Lect. Notes Comp. Science, vol. 3980, pp. 665–674,
2006. http://www.eu-egee.org/compchem.

[7] A. Aguado, C. Tablero, and M. Paniagua, “Global fit of ab ini-
tio potential energy surfaces I. Triatomic systems,” Computer
Physics Communications, vol. 108, no. 2-3, pp. 259–266, 1998.

[8] D. Skouteris, J. F. Castillo, and D. E. Manolopulos, “Abc: a
quantum reactive scattering program,” Comp. Phys. Comm.,
vol. 133, pp. 128–135, 2000.

[9] “GC3Pie website.” http://code.google.com/p/gc3pie/.

[10] B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, “GRO-
MACS 4: Algorithms for highly efficient, load-balanced, and
scalable molecular simulation,” J. Chem. Theor. Comp., vol. 4,
pp. 435–447, 2008.

183

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

184 Bibliography

[11] W. Smith and T. R. Forester, “DL POLY2: a general pur-
pose parallel molecular dynamics simulation package,” Journal
of Molecular Graphics, vol. 14 (3), pp. 136–141, 1996.

[12] M. Albert́ı, A. Costantini, A. Laganà, and F. Pirani, “Are Mi-
celles Needed to Form Methane Hydrates in Sodium Dodecyl Sul-
fate Solutions?,” J. Phys. Chem. B, vol. 116, pp. 4220–4227, 2012.

[13] D. Gross and H. Carl, Fundamentals of Queueing Theory. Wiley,
1998.

[14] M. W. Kirby, Operational Research in War and Peace: The
British Experience from the 1930s to 1970. Imperial College
Press, 2003.

[15] K. A. Atkinson, An Introduction to Numerical Analysis. Wiley,
1989.

[16] C. Runge, “Uber die numerische auflösung von differential-
gleichungen,” Math. Ann., vol. 46, pp. 167–178, 1985.

[17] F. E. Cellier, Continuous System Modeling. Springer, 1991.

[18] “JAVA.” http://java.sun.com.

[19] E. Y. Chun, H. Chen, and I. Lee, “Web-Based Simulation Exper-
iments,” Proceedings of the 1998 Winter Simulation Conference,
vol. 52, pp. 1649–1654, 1998.

[20] “HTML.” www.html.it.

[21] L. Whitman, B. Huff, and S. Palaniswamy, “Commercial Simula-
tion Over the Web,” Proceedings of the 1998 Winter Simulation
Conference, pp. 335–339, 1998.

[22] R. McNab and F. W. Howell, “Using Java for Discrete Event Sim-
ulation,” Engineering Workshop, University of Edinburgh, UK,
pp. 219–228, 1996.

[23] R. S. Nair, J. A. Miller, and Z. Zhang, “Java-Based Query Driven
Simulation Environment,” Proceedings of the Winter Simulation
Conference, pp. 786–793, 1996.

[24] K. J. Healy and S. R. A. Kilgore, “A java-based process simula-
tion language,” Proceedings of the Winter Simulation Conference,
pp. 475–482, 1997.

[25] D. Knuth, Electronic Computers Within The Ordnance Corps.
Addison-Wesley, 1997.

[26] J. von Neumann, Various techniques used in connection with ran-
dom digits. U.S. Government Printing Office, 1951.

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

Bibliography 185

[27] S. Park and K. Miller, “Random Number Generators: Good Ones
Are Hard To Find,” Communications of the ACM, pp. 1192–1201,
1988.

[28] R. Tausworthe, “Random Numbers Generated by Linear Re-
currence Modulo Two,” Mathematics and Computation, vol. 19,
pp. 201–209, 1965.

[29] R. Brent, “Uniform random number generators for supercomput-
ers,” Proc. of Fifth Australian Supercomputer Conference, Mel-
bourne, vol. 19, pp. 704–706, 1992.

[30] T. Matsumoto, M.; Nishimura, “Mersenne twister: a 623-
dimensionally equidistributed uniform pseudo-random number
generator,” ACM Transactions on Modeling and Computer Sim-
ulation, vol. 8 (1), pp. 3–30, 1998.

[31] M. Abramowitz and I. A. Stegun, Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables. New
York: Dover, 1972.

[32] M. Evans, N. Hastings, and B. Peacock, Statistical Distributions.
Wiley, 2000.

[33] I. Barany and V. Vu, “Central limit theorems for Gaussian
polytopes,” The Annals of Probability (Institute of Mathemati-
cal Statistics), vol. 35 (4), pp. 1593–1621, 2007.

[34] F. A. Haight, Handbook of the Poisson Distribution. Wiley, 1967.

[35] R. G. Sargent, “Verification and validation of simulation models,”
Proceedings of the 37th conference on Winter simulation, pp. 130–
143, 2005.

[36] O. Balci, “How to assess the acceptability and credi-bility of sim-
ulation results,” Proc. 1989 Winter Simulation Conf., pp. 62–71,
1989.

[37] S. I. Gass, “Model accreditation: a rationale and process for de-
termining a numerical rating,” European Journal of Operational
Research, vol. 66 (2), pp. 250–258, 1993.

[38] R. G. Sargent, “Verification and validation of simulation models,”
Proceedings of the 2007 Winter Simulation Conference, pp. 124–
137, 2007.

[39] L. Schruben, “Establishing the credibility of simulation models,”
Simulation, vol. 34 (3), pp. 101–105, 1980.

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

186 Bibliography

[40] S. Takahashi, “General morphism for modeling relations in multi-
modeling,” Transactions of the Society for Computer Simulation
International, vol. 13(4), pp. 169–178, 1996.

[41] A. J. Majda, Atmospheric and ocean science provides a rich
source of multiscale problems. Amer. Math. Soc., 2000.

[42] A. Bensoussan, J. Lions, and G. Papanicolaou, Asymptotic Anal-
ysis of Periodic Structures. North-Holland, Amsterd-New York,
1978.

[43] J. Kevorkian and J. D. Cole, Multiple Scale and Singular Pertur-
bation Methods. Springer, New York, 1996.

[44] V. P. Malsov and M. V. Fedoriuk, Semiclassical Approximation
in Quantum Mechanics. D. Reidel, Dordrecht-Boston, 1981.

[45] J. B. Keller, “Geometrical theory of diffraction,” J. Opt. Soc.
Amer., vol. 52, 1962.

[46] A. J. Majda, I. Timofeyev, and E. Vanden-Eijnden, “Systematic
strategies for stochastic mode reduction in climate,” J. Atmos.
Sci., 2003.

[47] A. J. Chorin, “Conditional expectations and renormalization,”
Multiscale Model. Simul., vol. 1, 2003.

[48] K. Wilson Phys. Rev., vol. B4, 1971.

[49] A. Brandt, “Multigrid methods in lattice field computations,”
Nuclear Phys. B, vol. Proc. Suppl. 26, 1992.

[50] E. B. Tadmor, M. Ortiz, and R. Phillips, “Quasicontinuum anal-
ysis of defects in crystals,” Phil. Mag., vol. A73, 1996.

[51] R. B. Bird, C. F. Curtiss, R. C. Armstrong, and O. Hassager,
Dynamics of Polymeric Liquids, vol. 2: Kinetic Theory. Wiley,
New York, 1987.

[52] F. F. Abraham, J. Q. Broughton, N. Berdstein, and E. Kaxiras,
“Spanning the continuum to quantum length scales in a dynamic
simulation of brittle fracture,” Europhys. Lett., vol. 44 (6), 1998.

[53] E. Vanden-Eijnden, “Numerical techniques for multiscale dynam-
ical systems with stochastic effects,” Comm. Math. Sci., vol. 1,
2003.

[54] C. Theodoropoulos, Y. Qian, and I. G. Kevrekidis Proc. Nat.
Acad. Sci., vol. U.S.A. 97 (18), 2000.

[55] J. P. Hansen and I. R. McDonald, Theory of simple liquids. 2nd
Ed., Academic, 1986.

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

Bibliography 187

[56] H. Goldstein, Classical Mechanics. Addison-Wesley, Mas-
sachusetts, 1950.

[57] L. Landau and E. Lifshitz, Mechanics. Pergamon Press, 1961.

[58] K. Kempf, Electronic Computers Within The Ordnance Corps.
The U.S. Army Research Lab., 1961.

[59] G. Sohi, S. Breach, and T. Vijaykumar, “ Multiscalar proces-
sors,” Proceedings of the 22nd Annual International Symposium
on Computer Architecture, pp. 414–425, 1995.

[60] S. Orlando, Parallelizing and optimizing compiler. 1994.

[61] F. Quintana, J. Corbal, R. Espasa, and M. Valero, “Adding a
vector unit to a superscalar processor,” International Conference
on Supercomputing, pp. 1–10, 1999.

[62] C. Schauble, Vector Computing: An Introduction. High Perfor-
mance Scientific Computing University of Colorado at Boulder,
1995.

[63] M. Flynn, “Very high-speed computing systems,” Proc. of the
IEEE, vol. 54, p. 1901, 1966.

[64] “Cell Microprocessor Briefing. IBM, Sony Computer Entertain-
ment Inc., Toshiba Corp. 7 February 2005.” .

[65] “Centro di supercalcolo, Consorzio di 35 Università italiane.”
http://www.cineca.it.

[66] I. Foster, Designing and Building Parallel Programs. Argonne
National Laboratory: Addison-Wesley Inc., 1995.

[67] V. Sunderam, “PVM: A framework for parallel distributed
computing,” Concurrency: practice and experience, vol. 2(4),
pp. 315–339, 1990.

[68] G. Geist and V. Sunderam, “Network based concurrent comput-
ing on the PVM system,” Concurrency: practice and experience,
vol. 4(4), pp. 293–311, 1992.

[69] A. Beguelin, J. Dongarra, G. Geist, R. Manchek, and V. Sun-
deram, A user’s guide to PVM Parallel Virtual Machine. Ten-
nessee: Oak Ridge National Laboratory, 1992.

[70] M. Smir, S. Otto, S. Huss-Ledermam, D. Walker, and J. Don-
garra, “MPI: The complete reference,” Int. J. of Supercomputer
Applications, vol. 8(3/4), 1994.

[71] “EGI-Inspire project.” http://www.egi.eu/about/egi-inspire.

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

188 Bibliography

[72] I. Foster and C. Kesselman, The Grid: Blueprint for a Future
Computing Infrastructure. USA: Morgan Kaufmann Publishers,
1999.

[73] “ARC Middleware.” www.nordugrid.org/arc/ .

[74] “gLite website.” http://glite.web.cern.ch/glite.

[75] “UNICORE Mddleware.” www.unicore.eu.

[76] “The Globus Project.” http://www.globus.org.

[77] “EGEE website.” http://public.eu-egee.org.

[78] “European Middleware Initiative.” http://www.eu-emi.eu.

[79] “dCache home page.” http://www.dcache.org/.

[80] “Unified Middleware Distribution.”
https://wiki.egi.eu/wiki/Middleware.

[81] “Open Grid Services Architecture.”
http://en.wikipedia.org/wiki/Open Grid Services Architecture.

[82] “XML.” www.html.it/xml/.

[83] “EGI Design Study project.” http://web.eu-egi.eu/.

[84] “IGI (Italian Grid Infrastructure).” http://www.italiangrid.it/.

[85] J. J. Andreeva, B. B. Gaidioz, J. J. Herrala, G. G. Maier, R. R.
Rocha, and P. P. Saiz, “Experiment dashboard: the monitoring
system for the lhc experiments,” pp. 45–49, 2007.

[86] “GANGA.” http://ganga.web.cern.ch/ganga/.

[87] “DIANE.” https://wiki.egi.eu/wiki/VO Services/Services and Tools Portfolio.

[88] “HYDRA.” https://documents.egi.eu/public/ShowDocument?docid=327.

[89] “GrelC.” http://grelc.unile.it/events.php.

[90] “Kepler project.” https://kepler-project.org/.

[91] “P-GRADE.” www.p-grade.hu/.

[92] “SOMA2.” www.csc.fi/english/pages/soma.

[93] “Taverna.” www.taverna.org.uk/.

[94] L. Storchi, C. Manuali, O. Gervasi, G. Vitillaro, A. Laganà,
and F. Tarantelli, “Linear algebra computation benchmarks on
a model grid platform,” Lect. Notes Comp. Science, vol. 2658,
pp. 297–306, 2003.

[95] “Cannon algorithm.” http://en.wikipedia.org/wiki/Cannon%27s algorithm.

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

Bibliography 189

[96] “Fox Algorithm.” .

[97] “Strassen algorithm.” http://en.wikipedia.org/wiki/Strassen algorithm.

[98] V. Piermarini, L. Pacifici, S. Crocchianti, A. Laganà,
G. D’Agosto, and S. Tasso, “Parallel methods in time depen-
dent approaches to reactive scattering calculations,” Lect. Notes
Comp. Science, vol. 2073, pp. 567–575, 2001.

[99] D. Bellucci, , S. Tasso, and A. Laganà, “Parallel models for a dis-
crete variable wavepacket propagation,” Lect. Notes Comp. Sci-
ence, vol. 2331, pp. 908–917, 2002.

[100] V. Piermarini, L. Pacifici, S. Crocchianti, and A. Laganà, “Par-
allel approaches to the integration of the differential equations
for reactive scattering,” Lect. Notes Comp. Science, vol. 2658,
pp. 341–349, 2003.

[101] A. Saracibar, C. Sánchez, E. Garcia, A. Laganà, and D. Skouteris,
“Grid computing in time-dependent quantum reactive dynam-
ics,” Lect. Notes Comp. Science, vol. 5072, pp. 1065–1080, 2008.

[102] “The Chimere Chemistry-Transport Model. A multi-scale
model for air quality forecasting and simulation. In-
stitut Pierre-Simon Laplace, INERIS, LISA, C.N.R.S.”
http://euler.lmd.polytechnique.fr/chimere.

[103] A. Laganà, S. Crocchianti, G. Tentella, and A. Costantini, “The
mpi structure od chimere,” Lect. Notes Comp. Science, vol. 7333,
pp. 417–431, 2012.

[104] “NetCDF homepage.” http://www.unidata.ucar.edu/software/netcdf.

[105] L. Pacifici, D. Nalli, D. Skouteris, and A. Laganà, “Time depen-
dent quantum reactive scattering on gpu,” Lect. Notes Comp.
Science, vol. 6784, pp. 428–441, 2011.

[106] L. Pacifici, D. Nalli, and A. Laganà, “Quantum reactive scatter-
ing calculations on gpu,” Lect. Notes Comp. Science, vol. 7333,
pp. 292–303, 2012.

[107] R. Baraglia, M. Bravi, G. Capannini, A. Laganà, and E. Zam-
bonini, “A parallel code for time independent quantum reactive
scattering on cpu-gpu platforms,” Lect. Notes Comp. Science,
vol. 6784, pp. 412–427, 2011.

[108] F. Vella, R. Cefal, A. Costantini, O. Gervasi, and C. Tanci, “Gpu
computing in egi environment using a cloud approach (pdf),”
2011.

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

190 Bibliography

[109] “Amazon elastic compute cloud (ec2) web site.”
http://aws.amazon.com/ec2/.

[110] “Eucalyptus website.” http://www.eucalyptus.com.

[111] “Nimbus web site.” http://www.nimbusproject.org/.

[112] “Open nebula website.” http://opennebula.org.

[113] U. Yildiz, A. Guabtni, and A. Ngu, “Business versus scientific
workflow: A comparative study,” Technical Report N2009-3, Uni-
versity of California, Department of Computer Science,, 2009.

[114] T. Hey and A. Trefethen, “Cyberinfrastructure for e-Science,”
Science, vol. 308(6), pp. 817–821, 2005.

[115] E. Deelman and Y. Gil, “Managing large-scale scientific work-
flows in distributed environments: Experiences and challenges,”
e-Science, p. 144, 2006.

[116] A. Barker and J. van Hemert, “Scientific workflow: A survey
and research directions,” International Conference on Parallel
Processing and Applied Mathematics, pp. 746–753, 2008.

[117] M. P. Thomas, J. Burruss, L. Cinquini, G. Fox, D. Gan-
non, L. Gilbert, G. von Laszewski, K. Jackson, D. Middle-
ton, R. Moore, M. Pierce, B. Plale, A. Rajasekar, R. Regno,
E. Roberts, D. Schissel, A. Seth, and W. Schroeder, “Grid por-
tal architectures for scientific applications,” Journal of Physics:
Conference Series, vol. 16(1), p. 2005, 596.

[118] S. Davidson, S. Boulakia, A. Eyal, B. Ludscher, T. McPhillips,
S. Bowers, M. Anand, and J. Freir, “Provenance in Scientific-
Workflow Systems,” Proceedings of the international conference
on Management of data, 2008.

[119] S. Miles, J. Papay, W. C., P. Lord, C. Goble, and L. Moreau,
“Semantic Description, Publication and Discovery of Workflows
in myGrid,” Technical Report, University of Southampton, 2004.

[120] A. Laganà, E. Garcia, A. Paladini, P. Casavecchia, and N. Balu-
cani, “The last mile of molecular reaction dynamics virtual exper-
iments: the case of the OH(N = 1-10) + CO(j = 0-3) reaction,”
Faraday Discuss., 2012.

[121] “Detailed list of quantum chem-
istry and solid state physics software.”
http://en.wikipedia.org/wiki/List of quantum chemistry and solid
state physics software.

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

Bibliography 191

[122] “MOLPRO.” www.molpro.net/.

[123] “Dalton.” http://www.nsccs.ac.uk/s dalton.php.

[124] “GAMESS-US.” http://www.msg.ameslab.gov/GAMESS.

[125] M. Schmidt, K. Baldridge, J. Boatz, S. Elbert, M. Gordon,
J. Jensen, S. Koseki, N. Matsunaga, K. Nguyen, S.Su, T. Windus,
M. Dupuis, and J. Montgomery, “General Atomic and Molecu-
lar Electronic Structure System,” J. Comput. Chem., vol. 14,
pp. 1347–1363, 1993.

[126] C. G. Schatz, “Fitting potential energy surfaces,” Lecture notes
in Chemistry, vol. 75, pp. 15–32, 2000.

[127] N. J. Murrell, S. Carter, S. C. Farantos, P. Huxley, and A. J. C.
Varandas, Molecular Potential Energy Functions. New York,
USA: John Wiley & Sons, 1984.

[128] F. J. Aoiz, V. Sáez-Rábanos, B. Mart́ınez-Haya, and T. González-
Lezana, “Quasiclassical determination of reaction probabilities
as a function of the total angular momentum,” J. Chem. Phys.,
vol. 123, 2005.

[129] D. Skouteris, A. Laganà, G. Capecchi, and H. Werner Int. J.
Quantum Chem., vol. 96, pp. 562–567, 2004.

[130] H. Meyer, U. Manthe, and L. Cederbaum Chem. Phys. Lett.

[131] U. Manthe, H. Meyer, and L. Cederbaum J. Chem. Phys., vol. 97,
pp. 3199–3213, 1992.

[132] D. Ceperley Rev. Mod. Phys., vol. 67, pp. 279–355, 1995.

[133] W. Hase, R. Duchovic, X. Hu, A. Komornicki, K. Lim, D. Lu,
G. Peslherbe, K. Swamy, S. Vande Linde, A. Varandas, H. Wang,
and R. Wolf, “VENUS96: A General Chemical Dynamics Com-
puter Program,” Quantum Chemistry Program Exchange, vol. 16,
pp. 562–567, 2004.

[134] T. Erl, Service-Oriented Architecture: Concepts, Technology, and
Design. Upper Saddle River, NJ, USA: Prentice Hall PTR, 2005.

[135] O. Gervasi and A. Laganà, “SIMBEX: a Portal for the a pri-
ori simulation of crossed beam experiments,” Future Generation
Computer Systems, vol. 20, pp. 703–715, 2004.

[136] C. Manuali, A. Laganà, and S. Rampino, “GriF: A Grid frame-
work for a Web Service approach to reactive scattering,” Com-
puter Physics Communications, vol. 181, pp. 1179–1185, 2010.

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

192 Bibliography

[137] “CMST COST Action D37.” http://www.cost.esf.org/index.php?id
= 189&action number=D37.

[138] “CODECS (COnvergent Distributed Envi-
ronment for Computational Spectroscopy).”
http://www.cost.esf.org/domains actions/cmst/Actions/CM1002.

[139] “Detailed Chemical Kinetic Models for Cleaner Combustion.”
http://www.ensic.inpl-nancy.fr/cost/.

[140] “A worldwide e-Infrastructure for NMR and structural biology.”
http://www.wenmr.eu/.

[141] S. Gogouvitis, K. Konstanteli, G. Waldschmidt,
S.and Kousiouris, G. Katsaros, A. Menychtas, D. Kyriazis,
and T. Varvarigou, “Workflow management for soft real-time
interactive applications in virtualized environments,” Future
Generation Computer Systems, vol. 28, no. 1, pp. 193–209, 2012.

[142] S. Rampino, A. Monari, S. Evangelisti, E. Rossi, K. Ruud, and
A. Laganà, “A priori modeling of chemical reactions on a grid
based virtual laboratory,” Cracow 09 Grid Workshop, pp. 164–
171, 2010.

[143] J. M. Bowman, “Approximate Time Independent Methods for
Polyatomic Reactions,” Lecture Notes in Chemistry, vol. 75,
pp. 101–114, 2000.

[144] “AppPot website.” http://code.google.com/p/apppot/.

[145] S. Maffioletti, R. Murri, B. Jonen, and S. Scheur-
ing, “Computational workflows with GC3Pie.”
http://gc3pie.googlecode.com/svn/wiki/posters/euroscipy2011/gc3pie-
euroscipy2011.pdf. Poster presented at the EuroSciPy 2011
conference.

[146] J. Dike, User Mode Linux. Prentice Hall, April 2006.

[147] “UML website.” http://user-mode-linux.sourceforge.net.

[148] A. Costantini, R. Murri, S. Maffioletti, and A. Laganà, “A Grid
Execution Model for Computational Chemistry Applications Us-
ing the GC3Pie Framework and the AppPot VM Environment,”
Lect. Notes Comp. Science.

[149] “The G95 Project.” http://www.g95.org/.

[150] “SMSCG website.” http://www.smscg.ch.

[151] S. Rampino, A. Monari, E. Rossi, S. Evangelisti, and A. La-
ganà, “A priori modeling of chemical reactions on computational

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

Bibliography 193

grid platforms: Workflows and data models,” Chemical Physics,
vol. 398, pp. 192–198, 2011.

[152] G. A. Parker, A. Laganà, S. Crocchianti, and R. T. Pack, “A De-
tailed three dimensional quantum study of the Li + FH reaction,”
J. Chem. Phys., vol. 102, pp. 1238–1250, 1995.

[153] A. Laganà, A. Ochoa de Aspuru, A. Aguilar, X. Gimenez, and
J. M. Lucas, “Threshold effects and reaction barrier in the Li +
FH reaction and its isotopic variants,” J. Chem Phys, vol. 99,
pp. 11696–11700, 1995.

[154] V. Piermarini, S. Crocchianti, and A. Laganà J. Comp. Method
in Sciences and Eng., vol. 2, pp. 361–367, 2002.

[155] A. Laganà, S. Crocchianti, and V. Piermarini, “Towards a full
dimensional exact quantum calculation of the Li + HF reactive
cross section,” Lect. Notes Comp. Science, vol. 3044, pp. 422–431,
2004.

[156] A. Laganà, E. Garcia, and O. Gervasi, “Improved infinite order
sudden cross sections for the Li + HF reaction,” J. Chem. Phys.,
vol. 89, pp. 7238–7241, 1988.

[157] M. Baer, E. Garcia, A. Laganà, and O. Gervasi, “An approximate
three dimensional quantum mechanical study of the Li + HF →
LiF + H reaction,” Chem. Phys. Lett., vol. 158, pp. 362–368,
1989.

[158] A. Laganà, X. Gimenez, E. Garcia, and O. Gervasi, “Parallel
calculations of approximate 3D quantum cross sections: the Li +
HF reaction,” Chem. Phys. Lett., vol. 176, pp. 280–286, 1991.

[159] M. Baer, H. Loesch, H. J. Werner, and I. Last, “Integral and
differential cross sections for the Li + HF → LiF + H process.
A comparison between jz-quantum mechanical and experimental
results,” Chem. Phys. Lett., vol. 219, p. 372, 1994.

[160] M. Baer, I. Last, and H. Loesch, “Three-dimensional quantum
mechanical study of the Li + HF → LiF + H process: Calcula-
tion of integral and differential cross sections,” J. Chem. Phys.,
vol. 101, p. 9648, 1994.

[161] G. G. Balint-Kurti, F. Gogtas, S. Mort, A. Offer, A. Laganà,
and O. Gervasi, “A comparison of time-independent and time-
dependent quantum reactive scattering Li + HF → LiF + H
model calculations,” J. Chem. Phys., vol. 99, pp. 9567–9584,
1993.

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

194 Bibliography

[162] F. Gogtas, G. G. Balint-Kurti, and A. Offer, “Quantum Mechan-
ical Three-Dimensional Wavepacket Study of the Li + HF → LiF
+ H Reaction,” J. Chem. Phys., vol. 104, p. 7927, 1996.

[163] G. Parker, R. Pack, and A. Laganà, “Accurate 3D quantum re-
active probabilities of Li + FH,” Chem. Phys. Lett., vol. 202,
pp. 75–81, 1993.

[164] A. Laganà, G. Parker, and R. Pack, “Li + FH Reactive cross
sections from J=0 accurate quantum reactivity,” J. Chem. Phys.,
vol. 99, pp. 2269–2270, 1993.

[165] A. Laganà, A. Bolloni, and S. Crocchianti, “Quantum isotopic
effects and reaction mechanisms: the Li + HF reaction,” Phys.
Chem. Chem. Phys., vol. 2, pp. 535–540, 2000.

[166] A. Laganà, A. Bolloni, S. Crocchianti, and G. Parker, “On the
effect of increasing the total angular momentum on Li + HF
reactivity,” Chem. Phys. Lett., vol. 324, pp. 466–474, 2000.

[167] O. Hobel, R. Bobbenkamp, A. Paladini, A. Russo, and H. Loesch
Chem. Phys. Lett., vol. 6, p. 2168, 2004.

[168] O. Hobel, M. Menendez, and H. Loesch, “The translational en-
ergy dependence of the integral reaction cross section for Li +
HF(ν = 0) → LiF + H,” Phys. Chem. Chem. Phys., vol. 3,
p. 3633, 2001.

[169] R. Bobbenkamp, H. Loesch, M. Mudrich, and F. Stienkemeier,
“The excitation function for Li + HF → LiF + H at collision
energies below 80 meV,” J. Chem. Phys., vol. 135, pp. 204306–
204313, 2011.

[170] S. Rampino, L. Pacifici, and A. Laganà, “Li + FH → LiF +
H: a reaction born to behave as barrierless,” J. Chem. Phys.,
vol. (submitted), 2012.

[171] “C. Panse: Cloud Util Plots.” http://cran.r-
project.org/web/packages/cloudUtil/index.html.

[172] G. Sipos and P. Kacsuk, “Multi-Grid, Multi-User Workflows
in the P-GRADE Portal,” Journal of Grid Computing, vol. 3,
pp. 221–238, 2005.

[173] E. Gutiérrez, A. Costantini, J. López Cacheiro, and A. Rodŕıguez,
“G-FLUXO: A workflow portal specialized in Computational Bio-
Chemistry,” 1st Workshop IWPLS09, 2009.

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

Bibliography 195

[174] D. Thain, T. Tannenbaum, and M. Livny, Grid Computing: Mak-
ing The Global Infrastructure a Reality. Fran Berman, Anthony
J.G. Hey, Geoffrey Fox editors, John Wiley, NY, 2003.

[175] “GROMACS tutorials.” http://md.chem.rug.nl/education/mdcourse/
index.html.

[176] “G-FLUXO website.” http://gfluxo.cesga.es.

[177] “CSD.” http://www.ccdc.cam.ac.uk/products/csd .

[178] “CURL.” http://curl.haxx.se .

[179] “PRODRG.” http://davapc1.bioch.dundee.ac.uk/prodrg .

[180] “ITP.” http://www.gromacs.org/Documentation/File Formats/
itp File.

[181] “Jmol.” http://jmol.sourceforge.net.

[182] “PDB.” http://www.wwpdb.org.

[183] W. Smith, “Molecular dynamics on hypercube parallel comput-
ers,” Comp. Phys. Comm., vol. 62, pp. 229–248, 1991.

[184] A. Costantini, A. Laganà, L. Pacifici, and O. Gervasi, “An alter-
native distribution model for the Molecular Dynamics study of
liquid Propane on a grid platform,” Computational Science and
Applications, pp. 433–440, 2007.

[185] K. a. Kvenvolden Rev. Geophys., vol. 31, p. 173, 1993.

[186] E. a. Hammerschmidt Ind. Eng. Chem., vol. 26, p. 851, 1934.

[187] I. Chatti, A. Delahaye, L. Fournaison, and J. a. Petitet Ener.
Conv. Mang., vol. 46, p. 1333, 2005.

[188] E. J. a. Sloan Nature, vol. 426, p. 353, 2003.

[189] J. Vatamanu and P. a. Kusalik J. Phys. Chem. B, vol. 112,
p. 2399, 2008.

[190] C. Koh and D. a. Sloan AIChE, vol. 53, p. 1636, 2007.

[191] S. Alavi and T. a. Woo J. Chem. Phys., vol. 126, p. 044703, 2007.

[192] J. Zhang, C. Lo, P. Somasundaran, A. Lu, A. Couzis, and J. a.
Lee J. Phys. Chem. C, vol. 112, p. 12381, 2008.

[193] Y. Okano and K. a. Yasuoka J. Chem. Phys., vol. 124, p. 024510,
2006.

[194] A. Vysniauskas and P. a. Bishnoi Chem. Eng. Sci., vol. 38,
p. 1061, 1983.

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

196 Bibliography

[195] G. Jiang, T. Yunzhong, F. Ning, L. Zhang, B. Dou, and X. Wu,
Proceedings of the 6th International Conference on Gas Hydrates
(ICGH 2008). 2008.

[196] J. Zhang, S. Lee, and J. a. Lee Ind. Eng. Chem. Res., vol. 46,
p. 6353, 2007.

[197] Y. Zhong and R. a. Rogers Chem. Eng. Sci., vol. 55, p. 4175,
2000.

[198] P. Di Profio, S. Arca, R. Germani, and G. a. Savelli Chem. Eng.
Sci., vol. 60, p. 4141, 2005.

[199] A. Costantini, A. Laganà, F. Pirani, A. Maris, and W. a. Cami-
nati Lect. Notes Comp. Science, vol. 3480, p. 1046, 2005.

[200] A. Costantini, A. Laganà, and F. a. Pirani Lect. Notes Comp.
Science, vol. 3980, p. 738, 2006.

[201] A. Costantini and A. a. Laganà Lect. Notes Comp. Science,
vol. 5072, p. 1052, 2008.

[202] A. Costantini, M. Albert́ı, F. Pirani, and A. a. Laganà Int. J.
Quant. Chem., vol. 112, pp. 1810–1817, 2012.

[203] F. Pirani, M. Albert́ı, A. Castro, M. Moix, and D. a. Cappelletti
Chem. Phys. Lett., vol. 394, p. 37, 2004.

[204] M. Albert́ı, A. Castro, A. Laganà, F. Pirani, M. Porrini, and D. a.
Cappelletti Chem. Phys. Lett., vol. 392, p. 514, 2004.

[205] M. Albert́ı, A. Castro, A. Laganà, M. Moix, F. Pirani, D. Cap-
pelletti, and G. a. Liuti J. Phys. Chem. A, vol. 109, p. 2906,
2005.

[206] M. Albert́ı, A. Aguilar, J. Lucas, D. Cappelletti, A. Laganà, and
F. a. Pirani Chem. Phys., vol. 328, p. 221, 2006.

[207] M. Albert́ı, L. Pacifici, A. Laganà, and A. a. Aguilar Chem. Phys.,
vol. 327, p. 105, 2006.

[208] M. Albert́ı, A. Aguilar, J. Lucas, and F. a. Pirani J. Phys. Chem.
A, vol. 114, p. 11964, 2010.

[209] F. Huarte-Larrañaga, A. Aguilar, J. Lucas, and M. a. Albert́ı J.
Phys. Chem. A, vol. 111, p. 8072, 2007.

[210] M. Albert́ı, A. Aguilar, J. Lucas, D. Cappelletti, A. Laganà, and
F. a. Pirani Chem. Phys., vol. 328, p. 221, 2006.

[211] M. Albert́ı, A. Aguilar, J. Lucas, A. Laganà, and F. a. Pirani J.
Phys. Chem. A, vol. 111, p. 1780, 2007.

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

Bibliography 197

[212] M. a. Albert́ı J. Phys. Chem. A, vol. 114, p. 2266, 2010.

[213] M. Albert́ı, A. Aguilar, M. Bartolomei, D. Cappelletti, A. La-
ganà, J. Lucas, and F. a. Pirani Lect. Notes Comp. Science,
vol. 5072, p. 1026, 2008.

[214] M. Albert́ı, A. Aguilar, D. Cappelletti, A. Laganà, and F. a.
Pirani Int. J. Mass Spect., vol. 280, p. 50, 2009.

[215] M. Albert́ı, A. Aguilar, M. Bartolomei, D. Cappelletti, A. La-
ganà, J. Lucas, and F. a. Pirani Physica Scripta, vol. 78,
p. 058108, 2008.

[216] N. Faginas Lago, F. Huarte-Larrañaga, and . Albert́ı, M Eur.
Phys. J. D, vol. 55, p. 75, 2009.

[217] M. Paolantoni, N. Faginas Lago, M. Albert́ı, and A. a. Laganà J.
Phys. Chem. A, vol. 113, p. 15100, 2009.

[218] M. Albert́ı, N. Faginas Lago, A. Laganà, and F. a. Pirani Phys.
Chem. Chem. Phys., vol. 13, p. 8422, 2011.

[219] J. Watson, T. Baker, S. Bell, A. Gann, M. Levine, and R. a.
Losick, Biologia Molecular del gen. 5th Ed. (Ed Panamericana),
2008.

[220] C. Bruce, M. Berkowitz, L. Perera, and M. a. Forbes J. Phys.
Chem. B, vol. 106, p. 3788, 2002.

[221] “AMBER.” http://ambermd.org/dbase.html.

[222] P. Egelstaff, An Introduction to the Liquid State. Oxford Univer-
sity Press, New York, 1992.

[223] K. Schweighofer, U. Essmann, and M. a. Berkowitz Phys. Chem.
B, vol. 101, p. 3793, 1997.

[224] C. Koh, R. Wisbey, X. Wu, R. Westacott, and A. a. Soper J.
Chem. Phys., vol. 113, p. 6390, 2000.

[225] l. Storchi, F. Tarantelli, and A. Laganà, “Computing Molec-
ular energy surfaces on the grid,” Lect. Notes Comp. Science,
vol. 3980, pp. 675–683, 2006.

[226] A. Laganà, N. Faginas Lago, S. Rampino, F. Huarte-Larrañaga,
and E. Garcia, “Thermal rate coefficients in collinear versus
bent transition state reactions: the N+N2 case study,” Physica
Scripta, vol. 78(5), pp. 58116–58125, 2008.

Virt&l-Comm.2.2012.4

ISSN: 2279-8773

