
Report activities of the Research Cluster of the

University of Perugia.

MPI on the EGI Grid Platform

Alessandro Costantini1, Osvaldo Gervasi2, Stefano Crocchianti3, Leonardo
Pacifici3, and Antonio Laganà3

1 INFN Sez. Perugia - IGI, Italy
e-mail: alessandro.costantini@pg.infn.it

2 Dep. of Math. and Inf., University of Perugia, Italy
e-mail: osvaldo@unipg.it

3 Dep. of Chemistry, University of Perugia, Italy
e-mail: {croc,xleo,lag}@dyn.unipg.it

Abstract. UNIPG is a computer Science cluster made of researchers
belonging to the Department of Chemistry, Department of Physics and
the Department of Mathematics and Informatics of the University of
Perugia. The computational research activity of UNIPG is focused on
the codes of the Molecular and Materials Science (MMS) community
that in Perugia is made by the members of the Computational Dynamics
and Kinetics laboratory, of the Theoretical and Computational Inorganic
Chemistry and of the in Silico determination of Pharmacodynamic and
Pharmacokinetic Fate of Chemicals of the Department of Chemistry.
The following sections are describing the work performed by the research
cluster in since the EGI-InSPIRE project started.

1 Introduction

Execution of MPI applications requires sites that properly support the submis-
sion and execution of parallel applications and the availability of a MPI im-
plementation. For such reason the MPI sub-task has been created to produce
numerous MPI workbenches of increasing complexity with specific high impact
on the Computational Chemistry and Fusion communities. These products will
also have impact on other User Communities. The core sub-task objectives are:

– Improved end-user documentation, addressing MPI application development
and job submission in ARC, gLite and UNICORE,

– Quality controlled MPI site deployment documentation,
– Outreach and dissemination at major EGI events and workshops,
– User community, NGI and site engagement, gathering direct input,
– Participation in selected standardisation bodies.

MPI sub-task partners have a great wealth of experience in designing, pro-
ducing and deploying MPI applications under gLite. These range from relatively

Virt&l-Comm.3.2012.27

ISSN: 2279-8773

simple codes, to large scale production workflows using multiple externally pro-
vided (and widely used) MPI-enabled libraries. They also engage with the gLite,
ARC and UNICORE communities producing high-level documentation for MPI
application development and submission under these middleware. As part of
User Community engagement effort, the MPI team regularly surveys Virtual
Organisations, Users and Site administrators for critical feedback, acting as a
means to gather information about current deficits and future requirements.

The University of Perugia (UNIPG) cluster in collaboration with the Virtual
Organization (VO) COMPCHEM [1, 2] contributes to the activities of the MPI
sub-task by making available applications (some of which are in-house designed,
produced and deployed) under gLite middleware and investigating their parallel
structure and their MPI implementation. UNIPG is a computer Science clus-
ter made of researchers belonging to the Department of Chemistry, Department
of Physics and the Department of Mathematics and Informatics of the Univer-
sity of Perugia. The computational research activity of UNIPG is focused on
codes of the area of Molecular and Materials Science and Technology (MMST)
community. The following sections describe the related work performed within
EGI-InSPIRE project [3].

2 Linear algebra routines

A first study was carried out by considering the low level complexity codes
taken from typical library routines or algorithms popular among the MMST
community members. The work moved from preliminary attempts to implement
of some linear algebra computation benchmarks on a model grid platform [4] The
case dealt in some detail, here, is a set of three matrix multiplication algorithms.

2.1 Cannon algorithm

Cannon algorithm [5] it was developed in 1969 and still represents a memory
efficient version of the following matrix multiplication algorithm:

Ci,j = Cij +
N�

k=1

Aik ∗Bkj (1)

This algorithm partitions A and B matrices into square sub-blocks. In particular,
Cannon’s algorithm make use of a mesh of s2 processes that are connected as a
torus. Process (i, j) at location (i, j) initially begins with submatrices Ai,j and
Bi,j . As the algorithm progresses, the submatrices are passed left and upwards,
as sketched in Fig. 1:

1. Initially Pi,j begins with Ai,j and Bi,j .
2. Elements are moved from their initial positions to align them so that the

correct submatrices are multiplied with one another. Note, please, that sub-
matrices on the diagonal do not actually require alignment. Alignment is
obtained by shifting the i-th row of A i positions left and the j-th column
of B j positions up.

Virt&l-Comm.3.2012.27

ISSN: 2279-8773

Fig. 1. Scheme of the initial step of the Cannon algorithm

3. Each process, Pi,j multiplies its current submatrices and adds to a cumulative
sum.

4. The submatrices are shifted left and upwards.
5. The above two steps are repeated through the remaining submatrices.

The parallel algorithm will be implemented by making use of the MPI1 and MPI2
libraries. In particular, a Master-Slave model of parallelism will be adopted in
a typical SPMD approach. Moreover, due to the requirements of the algorithm,
some features of the MPI library will be used, like the virtual topologies, the
cartesian intra-communicators, and, depending on the platform, the RMA oper-
ations.

2.2 Fox algorithm

The Fox algorithm [6] is similar to the Cannon one: in particular, it is a matrix
multiply algorithm that uses a submatrix block cyclic data distribution. The
communication pattern is asymmetrical: rows broadcast, columns rotate. Yet
the Cannon algorithm performs uniform rotations. The Fox treatment makes
the following assumptions:

1. The number of processes (p) is a perfect square;
2. The matrices to be multiplied are square of order n x n;
3. sqrt(p) divides n evenly;

The pseudo-code for the Fox algorithm reads:
q = sqrt(p) // number of rows, cols in processor grid
// A is operand 1, B is operand 2 in A * B
// C is result
// i,j = process row, column
// src, dest rows for rotating ’up’

Virt&l-Comm.3.2012.27

ISSN: 2279-8773

src = i+1 mod q;
dest = i-1 mod q;
for (stage = 0; stage <q; stage++)
k bar = (i+stage) mod q;
broadcast(A[i,k bar]) to row i;
C[i,j] = C[i,j] + A[i,k bar]*B[k bar,j]
sendrecv(B[k bar,j],src,dest);

Also in this case, the parallel implementation will be similar to that of the
Cannon algorithm. In particular, use of virtual topologies and communicator
management primitives will be adopted.

2.3 Strassen algorithm

The Stressen algorithm represent the standard method of matrix multiplica-
tion of two n X n matrices takes O(n3) operations. Strassens algorithm [7] is
a Divide-and-Conquer algorithm that is asymptotically faster, i.e. O(nlg7). The
usual multiplication of two 2x2 matrices takes 8 multiplications and 4 additions.
Strassen showed how two 2x2 matrices can be multiplied using only 7 multipli-
cations and 18 additions. In particular, the Strassen algorithm multiplies two
matrices, A and B, by partitioning the matrices and recursively forming the
products of the submatrices. If we assume that A and B are n x n matrices and
that n is a power of 2, if we partition A and B into four submatrices of equal
size (2 x 2) and compute:
P1 = (A11 +A22)(B11 +B12)
P2 = (A21 +A22)B11

P3 = A11(B12 −B22)
P4 = A22(B21 −B11)
P5 = (A11 +A12)B22

P6 = (A21 −A11)(B11 +B12)
P7 = (A12 −A22)(B21 +B22

then it can be seen that:
C11 = P1 + P4 − P5 + P7

C12 = P3 + P5

C21 = P2 + P4

C22 = P1 + P3 − P2 + P6

If the conventional matrix multiplication algorithm is used, then there will be
approximatively 7 ·2(n/2)3 arithmetic operations in forming the Pi matrix prod-
ucts and 18 · (n/2)2 operations in adding and subtracting the submatrices on the
right hand side of the previous equations. If we adopt the Strassen algorithm,
the number of arithmetic operations is reduced from 2n3 to (7/8)2n3 in going
from the conventional algorithm to the Strassen one.
In this case, the parallel implementation will be more complicated than in the
previous ones. In fact, in terms of required communications the use of a divide-
and-conquer parallel scheme is difficult to implement, and, in particular, the
algorithm needs, from a computational point of view, an enormous number of

Virt&l-Comm.3.2012.27

ISSN: 2279-8773

recursive operations to reach the limit of the scalar x scalar multiplication. There-
fore, this algorithm, in order to run faster than the standard one, will probably
need some modifications in the parallel implementation.

3 Reactive scattering and Molecular Dynamics

The next level of complexity considered is that of Reactive scattering (ES) and
Molecular Dynamics (MD) programs. For them we have operated both on in-
house developed quantum RS codes (few atoms systems) and on popular MD
packages (many particle systems). As to quantum RS codes the work has been
concentrated from the very beginning on both fine and coarse grain MPI parallel
scheme previously developed. Particular interest was paid to the total angular
momentum (coarse) and to the wavefunction (or wavepacket) grid (fine grained
representation in both the time dependent [8] and the time independent [9,
10]) methods with application to the N+N2 system [11]. Previously measured
efficiencies and speedups for coarse and fine grained parallelism were confirmed
by Grid calculations performed within the MPI studies of the EGI-InSPIRE
project.

As to MD packages they are based on the application of the Newton second
law F = m a, where F is the force exerted on the particle, m is its mass and a
is its acceleration for all the particles of the considered system. The related set
of equations (motion equations) allow to determine from the knowledge of the
forces acting on every particle the corresponding acceleration. Integration of the
equations of motion then yields a trajectory that describes the positions, veloci-
ties and accelerations of the particles as a function of time. From this trajectory,
the average values of several properties can be determined by applying the er-
godic hypothesis (over long periods of time, the time spent by a particle in some
region of the phase space of microstates with the same energy is proportional to
the volume of this region). The method is deterministic; once the positions and
velocities of each atom are known at a given time, the state of the system can be
predicted at any time in the future or the past. Molecular dynamics simulations
can be time consuming and computationally expensive. The potential energy is
a function of the atomic positions (3N) of all the atoms in the system. Due to
the complicated nature of this function, there is no analytical solution to the
equations of motion; they must be integrated numerically. Different numerical
algorithms have been developed for this, with the most popular being: Verlet
algorithm, Leap-frog algorithm, Velocity Verlet and Beeman algorithm.

In the DL POLY Molecular Dynamics code [12] both the Velocity Verlet and
Leap-frog algorithm have been implemented. For our tests on the “valiomicine”
we made use of the Leap-frog algorithm on the EGI resources that support
COMPCHEM. The executable has been compiled statically in the UI (User
Interface) machine used by COMPCHEM in order to assure binary compatibility.
The compiler used was ifort (academic license) linked with MPICH2 libraries.
From a preliminary analysis performed by running the glite-wms-job-listmatch
and the related JDL file in which the requirements MPI-START & MPICH have

Virt&l-Comm.3.2012.27

ISSN: 2279-8773

been specified, resulted that 16 out of the 25 sites that support COMPCHEM
support also MPI applications. The reduction in the number of sites supporting
MPI from 22/25 in 2009 to 16/25 in 2010 is mainly due to the introduction of
the MPI-SAM tests (now NAGIOS tests) which assure the basic requirements
for a job submitted with MPI flags.

The performance of each site has been obtained running the DL POLY ex-
ecutable sequentially in one node and in parallel in 2 ,4 ,8, 16, 32, 64 nodes
on the same cluster, evaluating statistics and performances. The global perfor-
mances and the statistical analysis carried out by submitting MPI jobs have
been compared with those obtained in 2010 and in 2009.

As shown in Fig. 2 there is an overall improvement of the number of MPI
jobs running correctly and we believe that there is still room for improvement, in
particular in the right part of the graph where the CPU requirements are larger
than 32.

Tabs. 1 and 2 show in a more quantitative way the percentages plotted in Fig.
2. That shows that abortion does still occur (probably due to a misconfiguration
of some sites like hellasgrid.gr). This leads us to the conclusion that abortion is
structural and that, for production purposes, this sites should be omitted from
the pool of sites supporting MPI using the ”Requirement” tag in the JDL.

Table 1. Statistical analysis performed on the parallel jobs requiring up to 8 CPUs.

Job status % (2009) % (2010) % (2011)
Success 53 75 100
Not success 47 25 0

Table 2. Statistical analysis performed on the parallel jobs requiring up to 16 CPUs.

Job status % (2009) % (2010) % (2011)
Success 21 54 62
Not success 79 46 38

During the tests a delay in the submission procedure has been registered and
this could be mainly due to two factors:

- excessive load of the WMS during the submission procedure
- number of CPUs required

In fact, as larger is the number of CPUs required for the calculation, longer is
the match time to have all the CPUs free in the same cluster.

Virt&l-Comm.3.2012.27

ISSN: 2279-8773

Fig. 2. Visual representation of the statistical analysis plotting the percentage of suc-
cessful jobs against the different years.

4 CHIMERE multi scale Eulerian model

The highest level of complexity we tackled was the MPI structuring on the Grid
of the package Chimere [13]. Chimere is the multiscale three dimensional Chem-
istry and Transport Model (CTM) package, owned by French institutes INERIS,
LISA, CNRS, modeling the transformations of chemical species and the produc-
tion of secondary pollutants in the atmosphere. Chimere, originally implemented
on our machines in Perugia within a research agreement signed with the Regional
Agency for the Environment (ARPA[10]) of the Umbria Region, is believed to be
one of the modellistic packages better suited to deal with the chemistry nature
of pollutants transformation like the physico-chemical processes concerned with
diffusion, transport, deposition and photochemistry. It is in fact based on mech-
anisms combining a large family of chemical processes and the transport eulerian
model. Chimere is designed to provide daily predictions of Ozone (O3), sulphur
oxides (SOx), nitrogen oxides (NOx), carbon monoxide (CO), all the volatile
organic compounds but Methane (COVNM), particulate matter (PMk with k
being the maximum value of the diameter of the particulate for the considered
class) and other important atmospheric pollutants.

4.1 Implementation and parallel structure

The adopted version of Chimere (the V200606A one, written in FORTRAN 77
and later converted into FORTRAN 90, originally structured to run on x86 pro-
cessors and Linux operating systems) has been installed on a cluster of 8 Intel
nodes (Xeon 3GHz, 4GB ram, SLC5.7 operating system, Intel compiler, Gbit

Virt&l-Comm.3.2012.27

ISSN: 2279-8773

network) connected to the distributed computing Grid of EGI. This version of
the package has a Multiple Program Multiple Data (MPMD) structure that is
suited for use in MPI and needs in any case the running of at least two concur-
rent processes. Chimere is structured as a task farm concurrent model in which
a main process (master) rules a certain number of processes (workers) working
for it. The master sends to the workers the task to run and collects and stores
the returned results. The method adopted by the developers to distribute the
work among the workers is of the domain decomposition type. This method par-
titions the grid of the domain and assigns part of it to each process. The nzonal
x nmerid bi-dimensional grid associated with each of the lowest eight layers of
the troposphere (computing domain) is then partitioned into rectangular subdo-
mains characterized by the two user defined variables nzdoms e nmdoms (with
nzdoms indicating the number of subdomains in the direction west-east and
nmdoms that in the direction south-north as shown in Fig. 3). The number of
needed workers will be, therefore, nzdoms x nmdoms.

Fig. 3. Subdomains division in Chimere

In order to effectively exploit concurrency and achieve significant computing
throughput on the Grid a proper distribution model was adopted [14]. More in
detail, this consists of an iterative structure of independent cycles to be executed
a large number of times. Such a model exploits the fact that the dependence of
the simulation relative to a given day does only partially (for a few hours) de-
pend on the initial concentrations (i.e. the values of the previous day) since they
rapidly converge to the actual solution regardless of the starting values. Accord-
ingly, we have restructured Chimere so as to run concurrently several simulations
for subsets of days the first of which replicates the last day calculations of an-

Virt&l-Comm.3.2012.27

ISSN: 2279-8773

other (arbitrary) subset. Then the results obtained using various subsets are
glued together by discarding the starting day of each subset. The procedure was
checked by comparing with an actual serial calculation by reproducing the heat
wave that hit Europe in the period July 30 - August 3 of the year 2003 and no
significant difference was found. The procedure is articulated as follows: first,
the code is compiled using the Intel Fortran Compiler, the NetCDF libraries [15]
with the support of the MPI libraries in order to maximize the performance of
the multi processorWorking Nodes (WNs) of the segment of the production EGI
grid available to the COMPCHEM VO. Second, the files necessary for the exe-
cution are uploaded to the Grid environment on one of the Storage Elements (a
remote machine for the date storing that supports, via the gridftp protocol, the
data transfer between the machines interconnected into the Grid) that supports
the VO (in our case for example the se.grid.unipg.it, SE) before submitting the
job. Third, the script is launched for execution.

4.2 Speed up and efficiecy

It has been found from the tests performed that the execution time of Chimere
appreciably depends on the number of workers used. This seems quite reasonable
due to the fact that the partitioning of the computational domain among an
increasing number of workers makes the amount of work per processor decrease.
To the end of measuring performances, real time (in seconds) values returned by
the system command time at the end of the execution of chimere.e have been
collected. Such a quantity indicates the net usage of the CPU inclusive of the
time necessary to the system to meet the requests of the process (system time).

To the end of evaluating the corresponding gain of time obtained when in-
creasing the number of processes, the usually plotted quantity is the speedup
(i.e. the ratio between the real time associated with the use of a single worker
and the one associated with the use of a given number of workers). Such plot is
shown in Fig. 4, in which the best (shortest) times for a given number of work-
ers are plotted. The plot has an initial increasing trend starting from 1 (single
worker) and keeps rising (though more smoothly) to reach a speedup close to 10
when 30 workers are used. Plotted values show large deviations from what can
be extrapolated from the first ones. As a matter of fact, already with a number
of workers slightly larger than 10, the deviation nears 100% with the speedup
curve approaching a plateau (though still keeping a residual positive slope). Such
behaviour is typical of parallel schemes requiring significant communication be-
tween the master and the workers that prevents additional gains. To verify the
dependence of the execution time on the domain partitioning, the occupation of
the workers has been analyzed confirming that in the combination 2x6 with 12
workers, for example, the last node is only half occupied. This means that only
2 processors out of 4 are engaged. In fact, on the first node there is always a pro-
cessor engaged by the master task and of the remaining 3 processors one is left
in occupied while the other two are engaged to run as workers. By following the
criterion of maximum occupation, the other workers are 4 on the second node
and 4 on the third node so that they are fully occupied. The remaining 2 workers

Virt&l-Comm.3.2012.27

ISSN: 2279-8773

run on the 4th node that results, therefore, half occupied. In the combination
2x5 with 10 workers, instead, the last node is totally occupied. In going from
the 2x5 to the 2x6 combination the execution time increases suggesting that the
best times are those in which the last node is fully occupied (as confirmed by
the analysis of the other cases). To better single out such effect, the speedups
achieved in the cases of a fully occupied or a partially occupied last node have
been rationalized and shown in Fig. 5. In the graphs results corresponding to
the same value of nzdoms or nmdoms has been connected obtaining, again, the
typical trend in which the speedup smoothly increases before reaching a max-
imum and decreases again afterwards. The final decrease could be rationalized
in terms of an increase of the time devoted to communications. As a matter of
fact, when subdomains are created, the cells of the computational domain are
partitioned by the subroutine of Chimere and seldom the cells are evenly divided
among the subdomains. This makes the remainder of the division to be unevenly
partitioned among the various subdomains.

Fig. 4. Best speed up value plotted as a function of the number of processes and the
corresponding nzdoms x nmdoms combination of values are quoted above the symbol.
The dotted line indicates the ideal trend

5 GPU computing using a cloud approach

The importance of fine grained parallelism in the codes considered has motivated
us to implement our codes also on GPUs.

GPU computing, or more in general the possibility of using the vector pro-
cessors of graphics card as computational general purpose computing units has,

Virt&l-Comm.3.2012.27

ISSN: 2279-8773

Fig. 5. Plot of the speedup as a function of the number of processes when the last node
is fully occupied (upper panel) and the last node is partially occupied (lower panel).
In the two graphs constant nzdoms or nmdoms series have been evidenced

in fact, generated considerable interest in the scientific community. In our case,
the research effort has concentrated on the implementation of the already men-
tioned time dependent and time independent quantum reactive scattering codes
of Refs [16–18]. However at present increasing emphasis is being put on Cloud
Computing and more generally the opportunity to transparently use computa-
tional resources, together with the consolidation of virtualization technologies,
allow to provide to the end users the needed specific environments for their ac-
tivities. This growing interest for this two aspects has further motivated our
research activity on how to use this technologies in a grid infrastructure. For
such reason, in the work carried out by our group [19], we provided a on-demand

Virt&l-Comm.3.2012.27

ISSN: 2279-8773

GPU environment (GPU framework, Operating System and libraries) accessible
via the EGI infrastructure making using a Cloud approach. The main purpose
of the work was to provide a ready to use GPU environments for the commu-
nities using the EGI infrastructure to share GPU resources. As a single GPU
environment does not satisfy the different requirements of these communities
(such as operating systems, compilers and scientific libraries). For this reason,
the developed system provides dynamical environments with the aim to optimize
GPU resources usage. Contextually, the Cloud Computing opportunity allows
to take into account the GPUs as a Service (IaaS). A strategy to provide on-
demand execution environments has been proposed through the joint usage of
traditional and widespread gLite components and the popular standard EC2 [20]
web-service APIs. An entire job flow that enables the Local Resource Manage-
ment System (LRMS) to discriminate the GPU resources requests, through Glue
Schema parameters, has been defined in order to allocate, in a dynamic fashion,
the required resources on a Cloud-like infrastructure either public, private or hy-
brid. To achieve this goal, part of the work has been devoted to the virtualization
of the physical GPU resources in order to make them available in a Infrastructure
as a Service (IaaS) private Cloud [21–23]. To this end a centralized mechanism,
responsible to listen for events generated by the LRMS like job scheduling and
termination, has been implemented to keep track of each request. These events
are then used to carry out the required actions as follows: once a job is received
and identified as a GPU usage request, is treated as an event that triggers the
allocation of virtualized resources according to simple leasing rules. In a similar
way the termination of jobs are notified to a daemon that releases the execution
environment. In order to develop and test the whole infrastructure, a fully work-
ing test bed has been built with the adoption of the Eucalyptus software [21]
system to implement a private cloud over the cluster. We also addressed the
need of the creation of Virtual Machine Images to match the requirements of
the execution of GPU-dependent jobs, such as CUDA, OpenCL libraries and
gLite middleware.

6 Conclusions

The availability of MPI on the virtually unlimited set of CPUs grafted on Grid
platforms has shown to be a strong incentive to implement different scientific
applications (from simple basic linear algebra algorithms to complex suites of
codes) on distributed systems and to develop appropriate distribution models.
On this ground the virtual organization (VO) COMPCHEM assembled out of
a group of molecular and material sciences laboratories, committed itself to
implement their computer codes on the section of the production European
Grid Infrastructure available to the VO using MPI. The presented case studies
demonstrates the possibility of using the parallel capabilities of the European
Grid and can be used as an example for those Communities which are interested
in the porting of their parallel applications into the Grid environment.

Virt&l-Comm.3.2012.27

ISSN: 2279-8773

Conferences and Workshops

- MPI support: Users view and prospectives: A. Costantini, L. Pacifici, A.
Laganà, S. Crocchianti. EGI Technical Forum, Amsterdam, the Nederlands,
14-17th September 2010.

- GPU computing in EGI environment using a cloud approach: Costantini A.,
Gervasi O., Vella F., Cefalà R., EGI User Forum 2011, Vilnius, Lithuania,
11-14 April 2011

- Vella, F., Cefalà, R.M., Costantini, A., Gervasi, O., Tanci, C., Proceedings
of 11th International Conference on Computational Science and Its Appli-
cations, 150-155 (2011)

- MPI and parallel code support: A. Costantini, I. Campos, E. Fernández, A.
Laganà, J. Walsh. EGI Technical Forum, Lyon, Paris, 19-23th September
2011.

- MPI in EGI: A Simon, G. Borges, A. Costantini, E. Fernández, EGI Tech-
nical Forum, Prague, 17th-21st September 2012.

Acknowledgments

The authors would like to acknowledge the financial support of the EGI-Inspire
project (contract number 261323); MIUR PRIN 2008 (contract number 2008
KJX4SN 003); ESA ESTEC (contract number 21790/08/NL/HE); Phys4entry
FP7/2007-2013 (contract number 242311); Fondazione Cassa di Risparmio of
Perugia and ARPA Umbria.

The research leading to the results presented in this paper has been possible
thanks to the Grid resources and services provided by the European Grid Infras-
tructure (EGI) and the Italian Grid Infrastructure (IGI). For more information,
please reference the EGI-InSPIRE paper (http://go.egi.eu/pdnon) and the IGI
web server (http://www.italiangrid.it)

References

1. A. Laganà, A. Riganelli, and O. Gervasi, “On the Structuring of the Computa-
tional Chemistry Virtual Organization COMPCHEM,” Lect. Notes Comp. Science,
vol. 3980, pp. 665–674, 2006. http://www.eu-egee.org/compchem.

2. A. Costantini, C. Manuali, N. Faginas Lago, S. Rampino, and A. Laganà, “COM-
PCHEM: progress towards GEMS a Grid Empowered Molecular Simulator and
beyond,” Journal of Grid Computing, vol. 8(4), pp. 571–586, 2010.

3. “EGI-Inspire project.” http://www.egi.eu/about/egi-inspire.
4. L. Storchi, C. Manuali, O. Gervasi, G. Vitillaro, A. Laganà, and F. Tarantelli,

“Linear algebra computation benchmarks on a model grid platform,” Lect. Notes
Comp. Science, vol. 2658, pp. 297–306, 2003.

5. “Cannon algorithm.” http://en.wikipedia.org/wiki/Cannon%27s algorithm.
6. “Fox Algorithm.” .
7. “Strassen algorithm.” http://en.wikipedia.org/wiki/Strassen algorithm.

Virt&l-Comm.3.2012.27

ISSN: 2279-8773

8. V. Piermarini, L. Pacifici, S. Crocchianti, A. Laganà, G. D’Agosto, and S. Tasso,
“Parallel methods in time dependent approaches to reactive scattering calcula-
tions,” Lect. Notes Comp. Science, vol. 2073, pp. 567–575, 2001.

9. D. Bellucci, , S. Tasso, and A. Laganà, “Parallel models for a discrete variable
wavepacket propagation,” Lect. Notes Comp. Science, vol. 2331, pp. 908–917, 2002.

10. V. Piermarini, L. Pacifici, S. Crocchianti, and A. Laganà, “Parallel approaches to
the integration of the differential equations for reactive scattering,” Lect. Notes
Comp. Science, vol. 2658, pp. 341–349, 2003.

11. A. Saracibar, C. Sánchez, E. Garcia, A. Laganà, and D. Skouteris, “Grid comput-
ing in time-dependent quantum reactive dynamics,” Lect. Notes Comp. Science,
vol. 5072, pp. 1065–1080, 2008.

12. W. Smith and T. R. Forester, “DL POLY2: a general purpose parallel molecular
dynamics simulation package,” Journal of Molecular Graphics, vol. 14 (3), pp. 136–
141, 1996.

13. “The Chimere Chemistry-Transport Model. A multi-scale model for air qual-
ity forecasting and simulation. Institut Pierre-Simon Laplace, INERIS, LISA,
C.N.R.S.” http://euler.lmd.polytechnique.fr/chimere.

14. A. Laganà, S. Crocchianti, G. Tentella, and A. Costantini, “The mpi structure od
chimere,” Lect. Notes Comp. Science, vol. 7333, pp. 417–431, 2012.

15. “NetCDF homepage.” http://www.unidata.ucar.edu/software/netcdf.
16. L. Pacifici, D. Nalli, D. Skouteris, and A. Laganà, “Time dependent quantum

reactive scattering on gpu,” Lect. Notes Comp. Science, vol. 6784, pp. 428–441,
2011.

17. L. Pacifici, D. Nalli, and A. Laganà, “Quantum reactive scattering calculations on
gpu,” Lect. Notes Comp. Science, vol. 7333, pp. 292–303, 2012.

18. R. Baraglia, M. Bravi, G. Capannini, A. Laganà, and E. Zambonini, “A parallel
code for time independent quantum reactive scattering on cpu-gpu platforms,”
Lect. Notes Comp. Science, vol. 6784, pp. 412–427, 2011.

19. F. Vella, R. Cefal, A. Costantini, O. Gervasi, and C. Tanci, “Gpu computing in
egi environment using a cloud approach (pdf),” 2011.

20. “Amazon elastic compute cloud (ec2) web site.” http://aws.amazon.com/ec2/.
21. “Eucalyptus website.” http://www.eucalyptus.com.
22. “Nimbus web site.” http://www.nimbusproject.org/.
23. “Open nebula website.” http://opennebula.org.

Virt&l-Comm.3.2012.27

ISSN: 2279-8773

